首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During cell division, cells undergo membrane remodeling to achieve changes in their size and shape. In addition, cell division entails local delivery and retrieval of membranes and specific proteins as well as remodeling of cytoskeletons, in particular, upon cytokinetic abscission. Accumulating lines of evidence highlight that endocytic membrane removal from and subsequent membrane delivery to the plasma membrane are crucial for the changes in cell size and shape, and that trafficking of vesicles carrying specific proteins to the abscission site participate in local remodeling of membranes and cytoskeletons. Furthermore, the endosomal sorting complex required for transport (ESCRT) machinery has been shown to play crucial roles in cytokinetic abscission. Here, the author briefly overviews membrane-trafficking events early in cell division, and subsequently focus on regulation and functional significance of membrane trafficking involving Rab11 and Arf6 small GTPases in late cytokinesis phases and assembly of the ESCRT machinery in cytokinetic abscission.  相似文献   

2.
Endocytic traffic in animal cell cytokinesis   总被引:1,自引:0,他引:1  
Cytokinesis is the final step of mitosis whereby two daughter cells physically separate. It is initiated by the assembly of an actomyosin contractile ring at the mitotic cell equator, which constricts the cytoplasm between the two reforming nuclei resulting in the formation of a narrow intercellular bridge filled with central spindle microtubule bundles. Cytokinesis terminates with the cleavage of the intercellular bridge in a poorly understood process called abscission. Recent work has highlighted the importance of membrane trafficking events occurring from membrane compartments flanking the bridge to the central midbody region. In particular, polarized delivery of endocytic recycling membranes is essential for completion of animal cell cytokinesis. Why endocytic traffic occurs within the intercellular bridge remains largely mysterious and its significance for cytokinesis will be discussed.  相似文献   

3.
Cytokinesis: placing and making the final cut   总被引:7,自引:0,他引:7  
Barr FA  Gruneberg U 《Cell》2007,131(5):847-860
Cytokinesis is the process by which cells physically separate after the duplication and spatial segregation of the genetic material. A number of general principles apply to this process. First the microtubule cytoskeleton plays an important role in the choice and positioning of the division site. Once the site is chosen, the local assembly of the actomyosin contractile ring remodels the plasma membrane. Finally, membrane trafficking to and membrane fusion at the division site cause the physical separation of the daughter cells, a process termed abscission. Here we will discuss recent advances in our understanding of the mechanisms of cytokinesis in animals, yeast, and plants.  相似文献   

4.
The terminal step of cytokinesis in animal cells is the abscission of the midbody, a cytoplasmic bridge that connects the two prospective daughter cells. Here we show that two members of the SNARE membrane fusion machinery, syntaxin 2 and endobrevin/VAMP-8, specifically localize to the midbody during cytokinesis in mammalian cells. Inhibition of their function by overexpression of nonmembrane-anchored mutants causes failure of cytokinesis leading to the formation of binucleated cells. Time-lapse microscopy shows that only midbody abscission but not further upstream events, such as furrowing, are affected. These results indicate that successful completion of cytokinesis requires a SNARE-mediated membrane fusion event and that this requirement is distinct from exocytic events that may be involved in prior ingression of the plasma membrane.  相似文献   

5.
Completion of cytokinesis requires Rab 11-dependent membrane trafficking events to deliver new membrane to the furrow and for abscission. Many Rabs have overlapping endosomal distributions, hence, we examined whether these Rabs also function in cytokinesis. Analysis of the distribution of Rabs 4, 5, 7, 8, 9, 11, 21, and 22 revealed that only Rab 11 was enriched within the furrow of cells in telophase or present within the midbody. By contrast, Rabs 4, 5, 7, 8, and 9 were mainly localised within a peri-nuclear compartment facing away from the furrow. Using RNA interference and dominant negative Rab mutants, we evaluated the role of these Rabs in furrowing and abscission. Consistent with previous work, we find that Rab 11 is intimately involved in abscission. However, we further found that depletion of Rab 4 slowed but did not prevent abscission. Depletion of any other Rab species had little effect on furrowing or abscission. These data suggest that the membrane trafficking events required for completion of cytokinesis are largely controlled by Rab 11 and not other endosomal Rab proteins, and further suggest that the relocation of Rab 11-specific cargo is an integral facet of abscission. Arf6 knockdown was without effect on cytokinesis, but when both Rab 11 and Arf6 were knocked-down, we found the furrow rapidly regressed and the cells were unable to form a stable midbody. We suggest that Rab 11 and Arf6 function synergistically in the switch from furrowing to abscission, as well as in the terminal stage of abscission.  相似文献   

6.
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.Key words: cell migration, cytokinesis, midbody, abscission, cleavage furrow, Crk, paxillin, syntaxin-2, ExoT  相似文献   

7.
Cytokinesis involves two phases: 1) membrane ingression followed by 2) membrane abscission. The ingression phase generates a cleavage furrow and this requires co-operative function of the actin-myosin II contractile ring and septin filaments. We demonstrate that the actin-binding protein, EPLIN, locates to the cleavage furrow during cytokinesis and this is possibly via association with the contractile ring components, myosin II, and the septin, Sept2. Depletion of EPLIN results in formation of multinucleated cells and this is associated with inefficient accumulation of active myosin II (MRLCS19) and Sept2 and their regulatory small GTPases, RhoA and Cdc42, respectively, to the cleavage furrow during the final stages of cytokinesis. We suggest that EPLIN may function during cytokinesis to maintain local accumulation of key cytokinesis proteins at the furrow.  相似文献   

8.
Membrane trafficking via targeted exocytosis to the Saccharomyces cerevisiae bud neck provides new membrane and membrane-associated factors that are critical for cytokinesis. It remains unknown whether yeast plasma membrane abscission, the final step of cytokinesis, occurs spontaneously following extensive vesicle fusion, as in plant cells, or requires dedicated membrane fission machinery, as in cultured mammalian cells. Components of the endosomal sorting complexes required for transport (ESCRT) pathway, or close relatives thereof, appear to participate in cytokinetic abscission in various cell types, but roles in cell division had not been documented in budding yeast, where ESCRTs were first characterized. By contrast, the septin family of filament-forming cytoskeletal proteins were first identified by their requirement for yeast cell division. We show here that mutations in ESCRT-encoding genes exacerbate the cytokinesis defects of cla4Δ or elm1Δ mutants, in which septin assembly is perturbed at an early stage in cell division, and alleviate phenotypes of cells carrying temperature-sensitive alleles of a septin-encoding gene, CDC10. Elevated chitin synthase II (Chs2) levels coupled with aberrant morphogenesis and chitin deposition in elm1Δ cells carrying ESCRT mutations suggest that ESCRTs normally enhance the efficiency of cell division by promoting timely endocytic turnover of key cytokinetic enzymes.  相似文献   

9.
Plasma membrane subdomains enriched in sphingolipids, cholesterol, and signaling proteins are critical for organization of actin, membrane trafficking, and cell polarity, but the role of such domains in cytokinesis in animal cells is unknown. Here, we show that eggs form a plasma membrane domain enriched in ganglioside G(M1) and cholesterol where tyrosine phosphorylated proteins occur at late anaphase at the contractile ring. The equatorial membrane domain forms by movement-specific lipids and proteins and is dependent on anaphase onset, myosin light chain phosphorylation, actin, and microtubules. Isolated detergent-resistant membranes contain Src and PLCgamma, which become tyrosine phosphorylated at cytokinesis, and whose activation is required for furrow progression. These studies suggest that membrane domains at the cleavage furrow possess a signaling pathway that contributes to cytokinesis.  相似文献   

10.
Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.  相似文献   

11.
Completion of cytokinesis, abscission, has been studied little despite the intensive studies of the onset and contractile mechanism of the earlier phases of division. It has been well documented that microtubule (MT) disruption before furrow stimulation prevents furrowing, while MT disruption after furrow stimulation allows division to proceed. We have confirmed those findings using the MT inhibitors, nocodazole and demecolcine. In addition, we have found that MT disruption after furrow stimulation but before completion of division prevents abscission as evidenced by the observation that prospective daughter cells in MT-disrupted eggs maintain electrical continuity. Continued observation of eggs revealed that the furrow in MT-disrupted eggs did not result in abscission, but rather held steady until the time when controls underwent second cleavage, at which point the furrows regressed. These findings extend the recent reports that MTs are required for completion of division in mammalian tissue culture cells and frog eggs, to invertebrates, suggesting a common mechanism of abscission for animal cells.  相似文献   

12.
Abscission is a complex cellular process that is required for mitotic division. It is well established that coordinated and localized changes in actin and microtubule dynamics are vital for cytokinetic ring formation, as well as establishment of the abscission site. Actin cytoskeleton reorganization during abscission would not be possible without the interplay between Rab11- and Rab35-containing endosomes and their effector proteins, whose roles in regulating endocytic pathways at the cleavage furrow have now been studied extensively. Here, we identified Rab14 as a novel regulator of cytokinesis. We demonstrate that depletion of Rab14 causes either cytokinesis failure or significantly prolongs division time. We show that Rab14 contributes to the efficiency of recruiting Rab11-endosomes to the thin intracellular bridge (ICB) microtubules and that Rab14 knockout leads to inhibition of actin clearance at the abscission site. Finally, we demonstrate that Rab14 binds to microtubule minus-end interacting MACF2/CAMSAP3 complex and that this binding affects targeting of endosomes to the ICB microtubules. Collectively, our data identified Rab14 and MACF2/CAMSAP3 as proteins that regulate actin depolymerization and endosome targeting during cytokinesis.  相似文献   

13.
Pohl C  Jentsch S 《Cell》2008,132(5):832-845
Cytokinesis involves the formation of a cleavage furrow, followed by abscission, the cutting of the midbody channel, the final bridge between dividing cells. Recently, the midbody ring became known as central for abscission, but its regulation remains enigmatic. Here, we identify BRUCE, a 528 kDa multifunctional protein, which processes ubiquitin-conjugating activity, as a major regulator of abscission. During cytokinesis, BRUCE moves from the vesicular system to the midbody ring and serves as a platform for the membrane delivery machinery and mitotic regulators. Depletion of BRUCE in cell cultures causes defective abscission and cytokinesis-associated apoptosis, accompanied by a block of vesicular targeting and defective formation of the midbody and the midbody ring. Notably, ubiquitin relocalizes from midbody microtubules to the midbody ring during cytokinesis, and depletion of BRUCE disrupts this process. We propose that BRUCE coordinates multiple steps required for abscission and that ubiquitylation may be a crucial trigger.  相似文献   

14.
The dramatic cell shape changes during cytokinesis require the interplay between microtubules and the actomyosin contractile ring, and addition of membrane to the plasma membrane. Numerous membrane-trafficking components localize to the central spindle during cytokinesis, but it is still unclear how this machinery is targeted there and how membrane trafficking is coordinated with cleavage furrow ingression. Here we use an arf6 null mutant to show that the endosomal GTPase ARF6 is required for cytokinesis in Drosophila spermatocytes. ARF6 is enriched on recycling endosomes at the central spindle, but it is required neither for central spindle nor actomyosin contractile ring assembly, nor for targeting of recycling endosomes to the central spindle. However, in arf6 mutants the cleavage furrow regresses because of a failure in rapid membrane addition to the plasma membrane. We propose that ARF6 promotes rapid recycling of endosomal membrane stores during cytokinesis, which is critical for rapid cleavage furrow ingression.  相似文献   

15.
The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble regulates actomyosin organization, while RacGAP50C and its binding partner, the Pavarotti kinesin-like protein, regulate microtubule bundling. All three factors are required for cytokinesis. As furrowing begins, these proteins colocalize to a cortical equatorial ring. We propose that RacGAP50C-Pavarotti complexes travel on cortical microtubules to the cell equator, where they associate with the Pebble RhoGEF to position contractile ring formation and coordinate F-actin and microtubule remodeling during cytokinesis.  相似文献   

16.
Abscission is the least understood step of cytokinesis. It consists of the final cut of the intercellular bridge connecting the sister cells at the end of mitosis, and is thought to involve membrane trafficking as well as lipid and cytoskeleton remodelling. We previously identified the Rab35 GTPase as a regulator of a fast recycling endocytic pathway that is essential for post-furrowing cytokinesis stages. Here, we report that the phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) 5-phosphatase OCRL, which is mutated in Lowe syndrome patients, is an effector of the Rab35 GTPase in cytokinesis abscission. GTP-bound (active) Rab35 directly interacts with OCRL and controls its localization at the intercellular bridge. Depletion of Rab35 or OCRL inhibits cytokinesis abscission and is associated with local abnormal PtdIns(4,5)P2 and F-actin accumulation in the intercellular bridge. These division defects are also found in cell lines derived from Lowe patients and can be corrected by the addition of low doses of F-actin depolymerization drugs. Our data demonstrate that PtdIns(4,5)P2 hydrolysis is important for normal cytokinesis abscission to locally remodel the F-actin cytoskeleton in the intercellular bridge. They also reveal an unexpected role for the phosphatase OCRL in cell division and shed new light on the pleiotropic phenotypes associated with Lowe disease.  相似文献   

17.
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.  相似文献   

18.
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring.  相似文献   

19.
In eukaryotic cells, recycling endosome-mediated trafficking contributes to the completion of cytokinesis, in a manner under the control of the centrosome. We report that the exocyst complex and its interacting GTPase RalA play a critical role in this polarized trafficking process. RalA resides in the recycling endosome and relocates from the pericentrosomal region to key cytokinetic structures including the cleavage furrow, and later, the abscission site. This event is coupled to the dynamic redistribution of the exocyst proteins. These associate with the centrosome in interphase and concentrate on the central spindle/midbody during cytokinesis. Disruption of RalA-exocyst function leads to cytokinesis failure in late stages, particularly abscission, resembling the cytokinesis defects induced by loss of centrosome function. These data suggest that RalA and the exocyst may regulate vesicle delivery to the centrosome-related abscission site during the terminal stage of cytokinesis, implicating RalA as a critical regulator of cell cycle progression.  相似文献   

20.
Cytokinesis is the final step of cell division and leads to the physical separation of the daughter cells. After the ingression of a cleavage membrane furrow that pinches the mother cell, future daughter cells spend much of the cytokinesis phase connected by an intercellular bridge. Rab proteins are major regulators of intracellular transport in eukaryotes, and here, we report an essential role for human Rab35 in both the stability of the bridge and its final abscission. We find that Rab35, whose function in membrane traffic was unknown, is localized to the plasma membrane and endocytic compartments and controls a fast endocytic recycling pathway. Consistent with a key requirement for Rab35-regulated recycling during cell division, inhibition of Rab35 function leads to the accumulation of endocytic markers on numerous cytoplasmic vacuoles in cells that failed cytokinesis. Moreover, Rab35 is involved in the intercellular bridge localization of two molecules essential for the postfurrowing steps of cytokinesis: the phosphatidylinositol 4,5-bis phosphate (PIP2) lipid and the septin SEPT2. We propose that the Rab35-regulated pathway plays an essential role during the terminal steps of cytokinesis by controlling septin and PIP2 subcellular distribution during cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号