首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain-specific benzodiazepine receptors are allosterically coupled to chloride ionophore-associated binding sites for sulfur-35-labeled t-butylbicyclophosphorothionate. The specific binding of t-butylbicyclophosphorothionate to fresh unwashed rat cortical membranes is inhibited by nanomolar concentrations of five benzodiazepine agonists but not by the antagonist Ro 15-1788. Their inhibitory potencies in this assay are closely related to their antimetrazol activities. Studies with solubilized receptor-complex preparations establish an absolute requirement for gamma-aminobutyric acid (3 to 10 microM), strongly suggesting that the antagonism of metrazol-induced seizures by the benzodiazepines involves an action on the chloride ionophore mediated through the low affinity gamma-aminobutyric acid receptor.  相似文献   

2.
A series of 2-substituted dynorphin A-(1-13) amide (Dyn A-(1-13)NH2) analogues was prepared by solid phase peptide synthesis and evaluated for opioid receptor affinities in radioligand binding assays and for opioid activity in the guinea pig ileum (GPI) assay. Amino acid substitution at the 2 position produced marked differences in both opioid receptor affinities and potency in the GPI assay; Ki values for the analogues in the radioligand binding assays and IC50 values in the GPI assay varied over three to four orders of magnitude. The parent peptide, Dyn A-(1-13)NH2, exhibited the greatest affinity and selectivity for kappa receptors and was the most potent peptide examined in the GPI assay. The most important determinant of opioid receptor selectivity and opioid potency for the synthetic analogues was the stereochemistry of the amino acid at the 2 position. Except for [D-Lys2]Dyn A-(1-13)NH2 in the kappa receptor binding assay, the analogues containing a D-amino acid at position 2 were much more potent in all of the assays than their corresponding isomers containing an L-amino acid at this position. The L-amino acid-substituted analogues generally retained some selectivity for kappa opioid receptors. The more potent derivatives with a D-amino acid in position 2, however, preferentially interacted with mu opioid receptors. Introduction of a positively charged amino acid into the 2 position generally decreased opioid receptor affinities and potency in the GPI assay.  相似文献   

3.
gamma-Aminobutyric acid receptors in brain postsynaptic densities   总被引:4,自引:0,他引:4  
Rat brain synaptic plasma membranes contain two receptorlike binding sites for the inhibitory transmitter gamma-aminobutyric acid. Postsynaptic junctional structures (postsynaptic densities) isolated from these membranes contain only the higher affinity site enriched more than sixfold compared to the membranes. The results provide the first direct evidence for the association of transmitter receptors with postsynaptic junctional sites in the brain.  相似文献   

4.
The efficacy of synaptic transmission depends on the availability of ionotropic and metabotropic neurotransmitter receptors at the plasma membrane, but the contribution of the endocytic and recycling pathways in the regulation of gamma-aminobutyric acid type B (GABA(B)) receptors remains controversial. To understand the mechanisms that regulate the abundance of GABA(B) receptors, we have studied their turnover combining surface biotin labeling and a microscopic immunoendocytosis assay in hippocampal and cortical neurons. We report that internalization of GABA(B) receptors is agonist-independent. We also demonstrate that receptors endocytose in the cell body and dendrites but not in axons. Additionally, we show that GABA(B) receptors endocytose as heterodimers via clathrin- and dynamin-1-dependent mechanisms and that they recycle to the plasma membrane after endocytosis. More importantly, we show that glutamate decreases the levels of cell surface receptors in a manner dependent on an intact proteasome pathway. These observations indicate that glutamate and not GABA controls the abundance of surface GABA(B) receptors in central neurons, consistent with their enrichment at glutamatergic synapses.  相似文献   

5.
Based on recent findings identifying the initial degradative cleavage of CCK-8 at the Met3-Gly4 bond by a metalloendopeptidase, two analogues of CCK-8 with D-Ala and D-Trp substitutions at the Gly4 position were synthesized as stable analogues. Their stability to proteolysis by brain membranes and their binding potency at central CCK receptors were quantified. Both peptides are stable to degradation by peptidases in cortical synaptic membrane preparations. The analogues are nearly equipotent to CCK-8 in their affinities for inhibition of 125I-CCK-33 binding to guinea pig cortical membranes. L-Ala and L-Trp substituted peptides were synthesized for comparison. Both these peptides are degraded by synaptic membranes and the L-Trp substituted peptide possesses a greatly reduced affinity for central CCK receptors. Therefore, the structure of CCK due to the D conformation of Gly is more capable of interacting with brain CCK receptors. Further conformational analysis will establish whether the stabilized structure is a beta-bend or a beta-turn. Since these peptides are highly potent and stable to brain proteolysis they may be useful as stable CCK analogues for in vivo application.  相似文献   

6.
We recently reported that the activation of cholecystokinin-2 receptors depress evoked excitatory postsynaptic currents (EPSCs) in nucleus accumbens (NAc) indirectly through gamma-aminobutyric acid (GABA) acting on gamma-aminobutyric acid-B (GABA(B)) receptors. Here, we determined the second messenger system that couples cholecystokinin-2 receptors to the observed synaptic depression. Using in vitro forebrain slices of rats and whole-cell patch recording, we tested the hypothesis that cholecystokinin-2 receptors are coupled to cAMP and protein kinase A signaling pathway. Cholecystokinin-8S induced inward currents and depressed evoked EPSCs. Forskolin, an activator of adenylyl cyclase and rolipram that is an inhibitor of phosphodiesterase type IV, independently increased EPSC amplitude and blocked the inward current and synaptic depression induced by cholecystokinin-8S. Furthermore, the membrane-permeable cAMP analog, 8-bromo-cAMP, blocked the cholecystokinin-8S effects. H89, a protein kinase A inhibitor, also blocked cholecystokinin-8S effects. However, depression of the evoked EPSC by baclofen, a GABA(B) receptor agonist, was not blocked by H89 or forskolin. These findings indicate that cholecystokinin-2, but not GABA(B), receptors are coupled to the adenylyl cyclase-cAMP-protein kinase A signaling pathway in the NAc to induce inward currents and cause synaptic depression.  相似文献   

7.
Binding activity of the radioactive cage convulsant [35S]t-butylbicyclophosphorothionate was solubilized from rat brain membranes using the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio] propanesulfonate. Binding (KD = 26 nM, Bmax = 0.4 pmol/mg protein) was inhibited by picrotoxin and related convulsants and by barbiturates and related depressants that interact with gamma-aminobutyric acid and benzodiazepine receptors via the picrotoxinin binding site. The convulsant/barbiturate binding activity chromatographed on gel filtration as a single peak coinciding with the benzodiazepine/gamma-aminobutyric acid receptor protein complex.  相似文献   

8.
Behavioural, biochemical and neurophysiological evidence suggests that gamma-aminobutyric acid (GABA) may play an important role in the neural control of circadian rhythms. Central receptors for benzodiazepines are functionally coupled to GABA receptors and appear to mediate behavioural effects of exogenous benzodiazepines. The binding of 3H-flunitrazepam to synaptic plasma membranes prepared from various regions of rat brain was examined at 6-hour intervals over a 36-hour period. Prominent daily rhythms in receptor number (Bmax) were observed in the frontal lobe and the cerebellum but not in the temporoparietal regions, hypothalamus or medulla/pons. Binding was highest during periods of sleep/low activity with a significant decrease occurring just prior to waking. These results suggest that daily fluctuations in benzodiazepine receptor numbers may be related to the temporal control of sleep/wake and muscle activity cycles.  相似文献   

9.
Fast synaptic inhibition in the brain and spinal cord is mediated largely by ionotropic gamma-aminobutyric acid (GABA) receptors. GABAA receptors play a key role in controlling neuronal activity; thus modulating their function will have important consequences for neuronal excitation. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are involved in a number of CNS diseases, including sleep disturbances, anxiety, premenstrual syndrome, alcoholism, muscle spasms, Alzheimer's disease, chronic pain, schizophrenia, bipolar affective disorders, and epilepsy. This review focuses on the functional and pharmacological properties of GABAA receptors and trafficking as an essential mechanism underlying the dynamic regulation of synaptic strength.  相似文献   

10.
The binding of [3H]flunitrazepam to benzodiazepine receptors in synaptic membranes and a digitonin-solubilized receptor fraction of rat brain is increased by avermectin B1a and gamma-aminobutyric acid (GABA). The effects of avermectin B1a and GABA are both sensitive to inhibition by (+)-bicuculline. Avermectin B1a and GABA both decrease the Kd and increase the Bmax of [3H]flunitrazepam binding to membranes. Kinetic analysis of the binding of [3H]flunitrazepam to rat brain membranes indicates that avermectin B1a and GABA reduce the rate constants of both association and dissociation between the ligand and the receptor. These results suggest a similar mechanism of modulation of benzodiazepine binding by avermectin B1a and GABA. This modulation may involve in interaction among the receptors for benzodiazepine, GABA and avermectin B1a.  相似文献   

11.
For synapses to form and function, neurotransmitter receptors must be recruited to a location on the postsynaptic cell in direct apposition to presynaptic neurotransmitter release. However, once receptors are inserted into the postsynaptic membrane, they are not fixed in place but are continually exchanged between synaptic and extrasynaptic regions, and they cycle between the surface and intracellular compartments. This article highlights and compares the current knowledge about the dynamics of acetylcholine receptors at the vertebrate peripheral neuromuscular junction and AMPA, N-methyl-D-aspartate, and gamma-aminobutyric acid receptors in central synapses.  相似文献   

12.
Ionotropic gamma-aminobutyric acid (GABA(A) and GABA(C)) receptors mediate fast synaptic inhibition in the central nervous system. GABA(C) receptors are expressed predominantly in the retina on bipolar cell axon terminals, and are thought to mediate feedback inhibition from GABAergic amacrine cells. Utilizing the yeast two-hybrid system, we previously identified MAP1B as a binding partner of the GABA(C) receptor rho1 subunit. Here we describe the isolation of an additional rho1 interacting protein: a novel C-terminal variant of the glycine transporter GLYT-1. We show that GLYT-1 exists as four alternatively spliced mRNAs which encode proteins expressing one of two possible intracellullar N- and C-terminal domains. Variants containing the novel C terminus efficiently transport glycine when expressed in COS cells, but with unusual kinetics. We have confirmed the interaction between the novel C terminus and rho1 subunit and demonstrated binding in heterologous cells. This interaction may be crucial for the integration of GABAergic and glycinergic neurotransmission in the retina.  相似文献   

13.
35S-labeled derivatives of the insecticides nodulisporic acid and ivermectin were synthesized and demonstrated to bind with high affinity to a population of receptors in Drosophila head membranes that were previously shown to be associated with a glutamate-gated chloride channel. Nodulisporic acid binding was modeled as binding to a single population of receptors. Ivermectin binding was composed of at least two kinetically distinct receptor populations, only one of which was associated with nodulisporic acid binding. The binding of these two ligands was modulated by glutamate, ivermectin, and antagonists of invertebrate gamma-aminobutyric acid (GABA)ergic receptors. Because solubilized nodulisporic acid and ivermectin receptors comigrated as 230-kDa complexes by gel filtration, antisera specific for both the Drosophila glutamate-gated chloride channel subunit GluCl alpha (DmGluCl alpha) and the GABA-gated chloride channel subunit Rdl (DmRdl) proteins were generated and used to examine the possible coassembly of these two subunits within a single receptor complex. DmGluCl alpha antibodies immunoprecipitated all of the ivermectin and nodulisporic acid receptors solubilized by detergent from Drosophila head membranes. DmRdl antibodies also immunoprecipitated all solubilized nodulisporic receptors, but only approximately 70% of the ivermectin receptors. These data suggest that both DmGluCl alpha and DmRdl are components of nodulisporic acid and ivermectin receptors, and that there also exists a distinct class of ivermectin receptors that contains the DmGluCl alpha subunit but not the DmRdl subunit. This co-association of DmGluCl alpha and DmRdl represents the first biochemical and immunological evidence of coassembly of subunits from two different subclasses of ligand-gated ion channel subunits.  相似文献   

14.
Specific binding activity of radiolabeled L-glutamic acid, a putative central excitatory neutrotransmitter, was drastically increased with increasing concentrations of Triton X-100 used for pretreatment of rat brain synaptic membranes. The binding in these Triton-treated membranes was a protein dependent, inversely temperature-dependent, stereospecific, structure-selective and saturable process with a high affinity for the amino acid. The binding activity was invariably inhibited by agonists and antagonists for the N-methyl-D-aspartic acid (NMDA)-sensitive subclass, but not by agonists for the other subclasses of excitatory amino acid neurotransmitter receptors in the brain. Scatchard analysis revealed that the binding sites consisted of a single component with a Kd of 24.4 +/- 2.5 nM and a Bmax of 0.94 +/- 0.09 pmol/mg protein. Some endogenous tryptophan metabolites such as kynurenic acid and quinolinic acid also inhibited the binding. These results suggest that synaptic membranes may indeed contain the NMDA-sensitive receptors which are disclosed by Triton X-100 treatment.  相似文献   

15.
Strychnine-insensitive [3H]glycine binding was detected in brain synaptic membranes treated with Triton X-100 using a filtration assay method. The binding was a time-dependent, inversely temperature-dependent, and reversible process with a relatively high affinity for the neuroactive amino acid. Scatchard analysis revealed that Triton treatment doubled both the affinity and density of the binding sites, which consisted of a single component. The binding was not only displaced by structurally-related amino acid such as D-serine and D-alanine, but also inhibited by some peptides containing glycine, including glycine methylester and N-methylglycine. These ligands invariably potentiated the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]- cyclohepten-5,10-imine ([3H]MK-801), a noncompetitive antagonist for the N-methyl-D-aspartate-sensitive subclass of the central excitatory amino acid receptors, in a concentration-dependent manner. Among various endogenous tryptophan metabolites, kynurenic acid significantly inhibited the strychnine-insensitive [3H]glycine binding. The Triton treatment did not affect the pharmacological profile of [3H]MK-801 binding sites. These results suggest that brain synaptic membranes treated with Triton X-100 are useful in evaluating the strychnine-insensitive and kynurenate-sensitive binding sites of glycine, which are functionally linked to N-methyl-D-aspartate- sensitive receptor channels.  相似文献   

16.
The effects of gamma-aminobutyric acid (GABA) on the uptake of 36Cl- into a membrane microsac preparation from isolated nerve cords of the cockroach Periplaneta americana was studied. On addition of 1 microM GABA (after 4-s incubation, then rapid quenching) the influx of 36Cl- was stimulated to a level 75% above that of the control value. This stimulation was reduced by picrotoxin (100 microM), but was not significantly affected by bicuculline (100 microM). Results of 36Cl- influx experiments are in agreement with data obtained from radiolabelled ligand binding assays and electrophysiological investigations on the same tissue. The method described represents a functional in vitro assay for CNS GABA receptors of insects.  相似文献   

17.
Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-aminobutyric acid) receptors in the retina, we used antibodies specific for GABA(C) receptor rho1-3 subunits. Analysis of immunoprecipitated proteins by MALDI-TOF MS (matrix-assisted laser-desorption ionization-time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253-813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the rho1 subunit, but not to other subunits of GABA(C), GABA(A) or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and rho1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABA(C) receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABA(C) receptor-containing signal complexes.  相似文献   

18.
Metabotropic gamma-aminobutyric acid (GABA)B receptors are known to modulate the synaptic release of various neurotransmitters in the nervous system. Activation of GABA(B) receptor induces the inhibition of adenylyl cyclase activity, while it does not stimulate the formation of inositol phosphates. Activation of a potassium conductance and suppression of a calcium conductance are also recognized, similarly to some of G protein-coupled receptors. Recent molecular cloning has revealed that GABA(B) receptor possesses a large extracellular domain including the binding site for GABA and seven transmembrane domains. Their molecular structures in the brain are unique and interesting because of heterodimerization consisting of two distinct genes: GABABR1 and GABABR2. Such assembled receptors can be classified as a novel type of the metabotropic receptor superfamily.  相似文献   

19.
The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions.  相似文献   

20.
The binding and biological activities of neurotensin and two analogues, [Trp11]-neurotensin and xenopsin, in which a tryptophan replaces the neurotensin residue Tyr11, were compared in rat and guinea-pig. The binding activity of the three peptides was measured as their ability to inhibit the binding of [3H]neurotensin to rat and guinea-pig brain synaptic membranes. Their biological activities were measured as their effects on the contractility of rat and guinea-pig ileal smooth muscle preparations. In binding as well as biological assays, it was found that [Trp11]-neurotensin and xenopsin were as potent as neurotensin in the rat. In contrast, the two analogues were about 10 times less potent than neurotensin in the guinea-pig. These findings reveal differences between rat and guinea-pig neurotensin receptors. Such species-related differences in neurotensin receptors should be considered when comparing the activity of neurotensin analogues in assays using tissue preparations from various animal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号