共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction and Characterization of an Escherichia coli Strain Genetically Engineered for Ni(II) Bioaccumulation 总被引:1,自引:0,他引:1
下载免费PDF全文

An Escherichia coli strain that accumulated Ni(II) was constructed by introducing the nixA gene (coding for a nickel transport system) from Helicobacter pylori into JM109 cells that expressed a glutathione S-transferase–pea metallothionein fusion protein. The resulting strain accumulated 15 μmol of Ni(II) per g (dry weight) from a 10 μM Ni(II) solution, four times the level taken up by JM109 cells. Ni(II) accumulation did not require an energy source, was inhibited by only 50% by 0.1 M NaCl, and occurred over the pH range from 3 to 9. 相似文献
2.
A strain of Escherichia coli carrying genes determining mercury resistance on a naturally occurring resistance transfer factor (RTF) converts 95% of 10(-5)m Hg(2+) (chloride) to metallic mercury at a rate of 4 to 5 nmoles of Hg(2+) per min per 10(8) cells. The metallic mercury is rapidly eliminated from the culture medium as mercury vapor. The volatilizing activity has a temperature dependence and heat sensitivity characteristic of enzymatic catalysis and is inducible by mercuric chloride. Ag(+) and Au(3+) are markedly inhibitory of mercury volatilization. 相似文献
3.
Escherichia coli co (II) alkaline phsophatase 总被引:2,自引:0,他引:2
4.
Gregor Grass Marco D. Wong Barry P. Rosen Ron L. Smith Christopher Rensing 《Journal of bacteriology》2002,184(3):864-866
Escherichia coli zupT (ygiE), encoding a ZIP family member, mediated zinc uptake. Growth of cells disrupted in both zupT and the znuABC operon was inhibited by EDTA at a much lower concentration than a single mutant or the wild type. Cells expressing ZupT from a plasmid exhibited increased uptake of (65)Zn(2+). 相似文献
5.
Emily K. Butler Wee Boon Tan Hildy Joseph Natividad Ruiz 《Journal of bacteriology》2014,196(23):4111-4119
Peptidoglycan (PG) is an extracytoplasmic glycopeptide matrix essential for the integrity of the envelope of most bacteria. The PG building block is a disaccharide-pentapeptide that is synthesized as a lipid-linked precursor called lipid II. The translocation of the amphipathic lipid II across the cytoplasmic membrane is required for subsequent incorporation of the disaccharide-pentapeptide into PG. In Escherichia coli, the essential inner membrane protein MurJ is the lipid II flippase. Previous studies showed that 8 charged residues in the central cavity region of MurJ are crucial for function. Here, we completed the functional analysis of all 57 charged residues in MurJ and demonstrated that the respective positive or negative charge of the 8 aforementioned residues is required for proper MurJ function. Loss of the negative charge in one of these residues, D39, causes a severe defect in MurJ biogenesis; by engineering an intragenic suppressor mutation that restores MurJ biogenesis, we found that this charge is also essential for MurJ function. Because of the low level of homology between MurJ and putative orthologs from Gram-positive bacteria, we explored the conservation of these 8 charged residues in YtgP, a homolog from Streptococcus pyogenes. We found that only 3 positive charges are similarly positioned and essential in YtgP; YtgP possesses additional charged residues within its predicted cavity that are essential for function and conserved among Gram-positive bacteria. From these data, we hypothesize that some charged residues in the cavity region of MurJ homologs are required for interaction with lipid II and/or energy coupling during transport. 相似文献
6.
SlyD interacts with HypB and contributes to nickel insertion during [NiFe]-hydrogenase biogenesis. Herein, we provide evidence of SlyD acting as a nickel storage determinant in Escherichia coli and show that this Ni(II) can be mobilized to HypB in vitro even under competitive conditions. Furthermore, SlyD enhances the GTPase activity of HypB, and acceleration of release of Ni(II) from HypB is more pronounced when HypB is GDP-bound. The data support a model in which a HypB-SlyD complex establishes communication between GTP hydrolysis and nickel delivery and provide insight into the role of the HypB-SlyD complex during [NiFe]-hydrogenase biosynthesis. 相似文献
7.
A cell-free extract of Daphnia magna was found to lyse Escherichia coli cells as shown by leakage of the enzymes alkaline phosphatase and β-galactosidase from the bacteria. The cell-free extract was separated on Sephadex G-200, and the fractions showing an ability to lyse E. coli cels were isolated. The factor which was responsible for the lysis of the bacterial cells was probably a protein with a molecular weight of several thousands. Mg2+ and Ca2+ ions augmented the activity of the Daphnia extract on E. coli cells. 相似文献
8.
Filamentous forms of Escherichia coli, induced by growth in the presence of cis-dichlorodiammineplatinum(II), contain amorphous inclusion aggregates, possibly ribosomal, with an affinity for uranium ion. 相似文献
9.
Expression of a Temperature-Sensitive Esterase in a Novel Chaperone-Based Escherichia coli Strain 总被引:1,自引:0,他引:1
下载免费PDF全文

Manuel Ferrer Tatyana N. Chernikova Kenneth N. Timmis Peter N. Golyshin 《Applied microbiology》2004,70(8):4499-4504
A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4°C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8T, that allow E. coli to grow at high rates at 4°C (maximum growth rate, 0.28 h−1) (M. Ferrer, T. N. Chernikova, M. Yakimov, P. N. Golyshin, and K. N. Timmis, Nat. Biotechnol. 21:1266-1267, 2003). The expression of a temperature-sensitive esterase in this host at 4 to 10°C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37°C (32,380 versus 190 μmol min−1 g−1). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5°C). 相似文献
10.
Nihei C Nakayashiki T Nakamura K Inokuchi H Gennis RB Kojima S Kita K 《Molecular genetics and genomics : MGG》2001,265(3):394-404
Heme molecules play important roles in electron transfer by redox proteins such as cytochromes. In addition, a structural role for heme in protein folding and the assembly of enzymes has been suggested. Previous results obtained using Escherichia coli hemA mutants, which are unable to synthesize 5-aminolevulinic acid, a precursor of porphyrins and hemes, have demonstrated a requirement for heme biosynthesis in the assembly of a functional succinate-ubiquinone reductase (SQR or complex II), which is a component of the aerobic respiratory chain. In the present study, in order to investigate the role of the heme in the assembly of E. coli SQR, we used a hemH (encodes ferrochelatase) mutant that lacks the ability to insert iron into the porphyrin ring. The hemH mutant failed to insert functional SQR into the cytoplasmic membrane, and the catalytic portion of SQR [the flavoprotein subunit (Fp) and the iron-sulfur protein subunit (Ip)] was localized in the cytoplasm of the cell. It is of interest to note that protoporphyrin IX accumulated in the mutant cells and inactivated the cytoplasmic succinate dehydrogenase (SDH) activity associated with the catalytic Fp-Ip complex. In contrast, SQR was assembled into the membrane of a heme-permeable hemH double mutant when hemin was present in the culture. Only a low level of SQR activity was found in the membrane when hemin was replaced by non-iron metalloporphyrins: Mn-, Co-, Ni-, Zn- and Cu-protoporphyrin IX, or protoporphyrin IX These results indicate that heme iron is indispensable for the functional assembly of SQR in the cytoplasmic membrane of E. coli, and provide a new insight into the biological role of heme in the molecular assembly of the multi-subunit enzyme complex. 相似文献
11.
Escherichia coli 70S ribosomes tightly bind 8 equiv of Zn(II), and EXAFS spectra indicate that Zn(II) may be protein-bound. Ribosomes were incubated with EDTA and Zn(II), and after dialysis, the resulting ribosomes bound 5 and 11 equiv of Zn(II), respectively. EXAFS studies show that the additional Zn(II) in the zinc-supplemented ribosomes binds in part to the phosphate backbone of the ribosome. Lastly, in vitro translation studies demonstrate that EDTA-treated ribosomes do not synthesize an active Zn(II)-bound metalloenzyme, while the as-isolated ribosomes do. These studies demonstrate that the majority of intracellular Zn(II) resides in the ribosome. 相似文献
12.
Poiată A Bădicuţ I Indreş M Biro M Buiuc D 《Roumanian archives of microbiology and immunology》2000,59(1-2):71-79
The use of organomercurials in liquid detergents and disinfectants promoted resistance to mercury among bacteria. Dental amalgam and industries using mercury are the main source of human exposure to mercury vapor. Release of mercury from dental amalgam contributes to the enrichment of the intestinal flora with mercury resistance plasmids which may be associated with antibiotic resistance. The aim of our study was to evaluate the frequency of E. coli strains resistant to mercury and other antimicrobial agents currently used in therapy. The bacterial mercury and ampicillin, cephalexin, cefotaxime, gentamicin, tetracycline and chloramphenicol resistance was tested against 363 E. coli strains obtained from faeces and urine between 1999-2000. According to the guidelines suggested by NCCLS (1998), minimum inhibitory concentrations (MICs) were determined on Mueller-Hinton agar, using the dilution technique with an inoculum of about 10(5) CFU. The MICs were read after 18 h incubation at 37 degrees C as the lowest concentration that inhibited the development of visible growth. Plasmids in enterobacteria may carry genes encoding resistance to both mercury and antibiotics. Among the tested E. coli strains, mercury resistance rose to 29.2%. Mercury resistance in E. coli is significantly linked to multiresistance to antimicrobial agents. Between 91.5-23.6 of mercury chloride resistant isolates were also resistant to the tested antibiotics. The increased use of non antibiotic antimicrobial agents is a possible selection factor for antibiotic-resistant strains in clinical and domestic environments. 相似文献
13.
14.
本文探讨了罗氏乳杆菌DSM122460无细胞上清培养液(Cell-Free Supernatant,CFS)移除胆固醇的能力。采用邻苯二甲醛法测定DSM122460和对照菌株ST-III发酵过程中及其CFS对胆固醇的移除能力,并研究不同CFS浓度下的移除能力。并采用HPLC法测定CFS对照、热处理组和pH7.0组的胆盐水解酶活力,同时测定其移除胆固醇能力。结果显示,DSM122460不仅在发酵过程中具有较高的移除胆固醇能力,其CFS也表现出较高的移除能力,CFS中含有除胆盐水解酶以外的可移除胆固醇的蛋白类成分。这提示可能存在一种乳酸菌移除胆固醇的新机制。 相似文献
15.
Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon−, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation. 相似文献
16.
Direct and Fe(II)-Mediated Reduction of Technetium by Fe(III)-Reducing Bacteria 总被引:6,自引:4,他引:6
下载免费PDF全文

The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms. 相似文献
17.
18.
The Na+ channels of Chinese Hamster lung fibroblasts have receptor sites for tetrodotoxin, batrachotoxin, veratridine, dihydrograyanotoxin, scorpion and sea anemone toxins. The binding properties of these toxic compounds were determined and shown to be very similar to those found in a variety of excitable cells. Electrophysiological experiments indicate that these Na+ channels cannot be electrically activated unless previously treated by veratridine. 相似文献
19.
20.
Inhibitory Effect of Diphtheria Toxin on Amino Acid Incorporation in Escherichia coli Cell-Free System 总被引:1,自引:1,他引:1
下载免费PDF全文

The mechanism of action of diphtheria toxin in an Escherichia coli cell-free protein-synthesizing system was examined. When the washed ribosomes were incubated with toxin before addition of messenger ribonucleic acid (RNA), peptide syntheses of (14)C-phenylalanine directed by polyuridylic acid or phage R17 RNA were strongly inhibited by a small amount of toxin. Whereas, if the soluble fraction (105,000 x g supernatant fraction) was preincubated with toxin, no effect of toxin occurred either on the induced protein synthesis or on the activity of guanosine triphosphatase even in the presence of nicotinamide adenine dinucleotide. The binding of (3)H-formylmethionyl-transfer RNA to E. coli ribosomes directed by either R17 RNA or trinucleotide AUG was also decreased by toxin. These findings suggest that diphtheria toxin may prevent the binding of messenger RNA by successfully competing with the AUG for ribosomal binding sites. Sucrose-density gradient studies support this concept by showing the decrease in binding of (3)H-labeled R17 RNA to E. coli ribosomes exposed to toxin. 相似文献