首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, ras KP , which causes excessive apoptosis in the Drosophila eye.  相似文献   

2.
The Akt/PKB isoforms have different roles in animals, with Akt2 primarily regulating metabolic signaling and Akt1 regulating growth and survival. Here we show distinct roles for Akt1 and Akt2 in mouse embryo fibroblast cell migration and regulation of the cytoskeleton. Akt1-deficient cells responded poorly to platelet-derived growth factor while Akt2-deficient cells had a dramatically enhanced response, resulting in a substantial increase in dorsal ruffling. Swapping domains between Akt1 and Akt2 demonstrated that the N-terminal region containing the pleckstrin homology domain and a linker region distinguishes the two isoforms, while the catalytic domains are interchangeable. Akt2 knock-out cells also migrated faster than wild-type cells, especially through extracellular matrix (ECM), while Akt1 knock-out cells migrated more slowly than wild-type cells. Consistently, Akt2 knock-out cells had elevated Pak1 and Rac activities, suggesting that Akt2 inhibits Rac and Pak1. Both Akt2 and Akt1 associated in complexes with Pak1, but only Akt2 inhibited Pak1 in kinase assays, suggesting an underlying molecular basis for the different cellular phenotypes. Together these data provide evidence for an unexpected functional link between Akt2 and Pak1 that opposes the actions of Akt1 on cell migration.  相似文献   

3.
The spermatogenic and oogenic lineages originate from bipotential primordial germ cells in response to signalling in the foetal testis or ovary, respectively. The signals required for male germ cell commitment and their entry into mitotic arrest remain largely unknown. Recent data show that the ligand GDNF is up regulated in the foetal testis indicating that it may be involved in male germ cell development. In this study genetic analysis of GDNF-RET signalling shows that RET is required for germ cell survival. Affected germ cells in Ret-/- mice lose expression of key germ cell markers, abnormally express cell cycle markers and undergo apoptosis. Surprisingly, a similar phenotype was not detected in Gdnf-/- mice indicating that either redundancy with a Gdnf related gene might compensate for its loss, or that RET operates in a GDNF independent manner in mouse foetal germ cells. Either way, this study identifies the proto-oncogene RET as a novel component of the foetal male germ cell development pathway.  相似文献   

4.
5.
The p21-activated protein kinases (Paks) regulate cellular proliferation, differentiation, transformation, and survival through multiple downstream signals. Paks are activated directly by the small GTPases Rac and Cdc42 and several protein kinases including Akt and PDK-1. We found that Akt phosphorylated and modestly activated Pak1 in vitro. The major site phosphorylated by Akt on Pak1 mapped to serine 21, a site originally shown to be weakly autophosphorylated on Pak1 when Cdc42 or Rac activates it. A peptide derived from the region surrounding serine 21 was a substrate for Akt but not Pak1 in vitro, and Akt stimulated serine 21 phosphorylation on the full-length Pak1 much better than Rac did. The adaptor protein Nck binds Pak near serine 21, and its association is regulated by phosphorylation of this site. We found that either treatment of Pak1 in vitro with Akt or coexpression of constitutively active Akt with Pak1 reduced Nck binding to Pak1. In HeLa cells, green fluorescent protein-tagged Pak1 was concentrated at focal adhesions and was released when Akt was cotransfected. A peptide containing the Nck binding site of Pak1 fused to a portion of human immunodeficiency virus Tat to allow it to enter cells was used to test the functional importance of Nck/Pak binding in Akt-stimulated cell migration. This Tat-Nck peptide reduced Akt-stimulated cell migration. Together, these data suggest that Akt modulates the association of Pak with Nck to regulate cell migration.  相似文献   

6.
PI 3-kinase, Akt and cell survival   总被引:29,自引:0,他引:29  
  相似文献   

7.
The activation of Akt/PKB signaling pathway and cell survival   总被引:22,自引:0,他引:22  
Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.  相似文献   

8.
Akt: versatile mediator of cell survival and beyond   总被引:4,自引:0,他引:4  
The serine/threonine kinase Akt has been intensely studied for its role in growth factor-mediated cell survival for the past 5 years. On the other hand, the ongoing research effort has recently uncovered novel regulatory mechanisms and downstream effectors of Akt that demonstrate the involvement of Akt in other cellular functions such as cell cycle progression, angiogenesis, and cancer cell invasion/metastasis. Furthermore, recent studies using whole model organisms suggest additional roles for Akt in important diseases such as aging and diabetes. The following review addresses these recent advances in the understanding of Akt function.  相似文献   

9.
The large-conductance Ca(2+)-activated K(+) (BK) channel and its β-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS) in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3γ, valosin-containing protein (VCP), stathmin (STMN), cortactin (CTTN), and prohibitin (PHB), of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR) and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca(2+) binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, γ-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-α serine/threonine-protein kinase 1 (Akt), glycogen synthase kinase-3β (GSK3β) and phosphoinositide-dependent kinase-1 (PDK1). Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3β and PDK1 had the opposite effect. This comparative systems approach suggests conservation in BK function across different species in addition to novel functions that may include the initiation of signals relevant to cell death/survival.  相似文献   

10.
Akt regulates cell survival and apoptosis at a postmitochondrial level   总被引:26,自引:0,他引:26  
Phosphoinositide 3 kinase/Akt pathway plays an essential role in neuronal survival. However, the cellular mechanisms by which Akt suppresses cell death and protects neurons from apoptosis remain unclear. We previously showed that transient expression of constitutively active Akt inhibits ceramide-induced death of hybrid motor neuron 1 cells. Here we show that stable expression of either constitutively active Akt or Bcl-2 inhibits apoptosis, but only Bcl-2 prevents the release of cytochrome c from mitochondria, suggesting that Akt regulates apoptosis at a postmitochondrial level. Consistent with this, overexpressing active Akt rescues cells from apoptosis without altering expression levels of endogenous Bcl-2, Bcl-x, or Bax. Akt inhibits apoptosis induced by microinjection of cytochrome c and lysates from cells expressing active Akt inhibit cytochrome c induced caspase activation in a cell-free assay while lysates from Bcl-2-expressing cells have no effect. Addition of cytochrome c and dATP to lysates from cells expressing active Akt do not activate caspase-9 or -3 and immunoprecipitated Akt added to control lysates blocks cytochrome c-induced activation of the caspase cascade. Taken together, these data suggest that Akt inhibits activation of caspase-9 and -3 by posttranslational modification of a cytosolic factor downstream of cytochrome c and before activation of caspase-9.  相似文献   

11.
Ras proteins undergo an incompletely understood trafficking process in the cell. Rasosomes are protein nanoparticles of 80–100 nm diameter that carry lipidated Ras isoforms (H-Ras and N-Ras) as well as their effectors through the cytoplasm and near the plasma membrane (PM). In this study, we identified the subcellular origin of rasosomes and how they spread Ras proteins through the cell. We found no dependency of rasosome formation on galectins, or on the GDP-/GTP-bound state of Ras. We found that significantly more rasosomes are associated with forms of Ras that are localized to the Golgi, namely N-Ras or the singly palmitoylated H-Ras mutant (C181S). To explore the possibility that rasosome originate from the Golgi, we used photoactivatable (PA)-GFP-H-Ras mutants and showed that rasosomes bud from the Golgi in a two-step mechanism. Newly released rasosomes first move in an energy-dependent directed fashion and then convert to randomly diffusing rasosomes. Dual fluorescence time-lapse imaging revealed the appearance of dually labeled rasosomes, indicating a dynamic exchange of cytoplasmic and PM-associated Ras with rasosome-associated Ras. Finally, higher levels of rasosomes correlate with higher levels of ERK phosphorylation, a key marker of Ras downstream signaling. We suggest that H-Ras and N-Ras proteins exchange with rasosomes that can function as carriers of palmitoylated Ras and its signals.  相似文献   

12.
13.
RasGAP (Ras GTPase-activating protein) is a negative regulator as well as a downstream effector of Ras. To identify partners of RasGAP we used it as the bait in a yeast two-hybrid screen. This resulted in discovering its interaction with Akt. Overexpression of RasGAP or a mutant lacking the GTPase-activating domain (nGAP) enhanced phosphorylation and activity of Akt, which was dependent on the upstream integrin-linked kinase. Also, nGAP protected the cells against staurosporin-induced apoptosis through an Akt-dependent pathway. To determine the role of RasGAP in receptor-mediated activation of Akt, we used short hairpin RNA interference to knock out endogenous RasGAP expression. Although this procedure resulted in enhanced Ras activity, it inhibited Akt phosphorylation. Thus, we propose that Ras-GAP interacts with Akt and is necessary for its activation, possibly via integrin-linked kinase-mediated phosphorylation of Ser-473. The data suggest that this effect is independent of Ras activity.  相似文献   

14.
The Akt kinase signals directly to endothelial nitric oxide synthase.   总被引:19,自引:0,他引:19  
Endothelial nitric oxide synthase (eNOS) is an important modulator of angiogenesis and vascular tone [1]. It is stimulated by treatment of endothelial cells in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent fashion by insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) [2] [3] and is activated by phosphorylation at Ser1177 in the sequence RIRTQS(1177)F (in the single-letter amino acid code) [4]. The protein kinase Akt is an important downstream target of PI 3-kinase [5] [6], regulating VEGF-stimulated endothelial cell survival [7]. Akt phosphorylates substrates within a defined motif [8], which is present in the sequence surrounding Ser1177 in eNOS. Both Akt [5] [6] and eNOS [9] are localized to, and activated at, the plasma membrane. We found that purified Akt phosphorylated cardiac eNOS at Ser1177, resulting in activation of eNOS. Phosphorylation at this site was stimulated by treatment of bovine aortic endothelial cells (BAECs) with VEGF or IGF-1, and Akt was activated in parallel. Preincubation with wortmannin, an inhibitor of Akt signalling, reduced VEGF- or IGF-1-induced Akt activity and eNOS phosphorylation. Akt was detected in immunoprecipitates of eNOS from BAECs, and eNOS in immunoprecipitates of Akt, indicating that the two enzymes associate in vivo. It is thus apparent that Akt directly activates eNOS in endothelial cells. These results strongly suggest that Akt has an important role in the regulation of normal angiogenesis and raise the possibility that the enhanced activity of this kinase that occurs in carcinomas may contribute to tumor vascularization and survival.  相似文献   

15.
Gap junctions and the propagation of cell survival and cell death signals   总被引:9,自引:0,他引:9  
Gap junctions are a unique type of intercellular channels that connect the cytoplasm of adjoining cells. Each gap junction channel is comprised of two hemichannels or connexons and each connexon is formed by the aggregation of six protein subunits known as connexins. Gap junction channels allow the intercellular passage of small (< 1.5 kDa) molecules and regulate essential processes during development and differentiation. However, their role in cell survival and cell death is poorly understood. We review experimental data that support the hypothesis that gap junction channels may propagate cell death and survival modulating signals. In addition, we explore the hypothesis that hemichannels (or unapposed connexons) might be used as a paracrine conduit to spread factors that modulate the fate of the surrounding cells. Finally, direct signal transduction activity of connexins in cell death and survival pathways is addressed.These authors share senior authorship.This study was supported by Ghent University GOA grant no. 12050502.This revised version was published online in May 2005 with corrections to one authors email address.  相似文献   

16.
In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues.  相似文献   

17.
In multicellular organisms, constituent cells depend on extracellular signals for growth, proliferation, and survival. When cells are withdrawn from growth factors, they undergo apoptosis. Expression of constitutively active forms of the serine/threonine kinase Akt/PKB can prevent apoptosis upon growth factor withdrawal. Akt-mediated survival depends in part on the maintenance of glucose metabolism, suggesting that reduced glucose utilization contributes to growth factor withdrawal-induced death. However, it is unclear how restricting access to extracellular glucose alone would lead to the metabolic collapse observed after growth factor withdrawal. We report herein that growth factor withdrawal results in the loss of surface transporters for not only glucose but also amino acids, low-density lipoprotein, and iron. This coordinated decline in transporters and receptors for extracellular molecules creates a catabolic state characterized by atrophy and a decline in the mitochondrial membrane potential. Activated forms of Akt maintained these transporters on the cell surface in the absence of growth factor through an mTOR-dependent mechanism. The mTOR inhibitor rapamycin diminished Akt-mediated increases in cell size, mitochondrial membrane potential, and cell survival. These results suggest that growth factors control cellular growth and survival by regulating cellular access to extracellular nutrients in part by modulating the activity of Akt and mTOR.  相似文献   

18.
Pak kinases are thought to play critical roles in cell migration and invasion. Here, we analyze the roles of Pak1 and Pak2 in breast carcinoma cell invasion using the transient transfection of small interfering RNA. We find that although both Pak1 and Pak2 contribute to breast carcinoma invasion stimulated by heregulin, these roles are mediated by distinct signaling mechanisms. Thus, whereas the depletion of Pak1 interferes with the heregulin-mediated dephosphorylation of cofilin, the depletion of Pak2 does not. The depletion of Pak1 also has a stronger inhibitory effect on lamellipodial protrusion than does the depletion of Pak2. Interestingly, Pak1 and Pak2 play opposite roles in regulating the phosphorylation of the myosin light chain (MLC). Whereas the depletion of Pak1 decreases phospho-MLC levels in heregulin-stimulated cells, the depletion of Pak2 enhances MLC phosphorylation. Consistent with their opposite effects on MLC phosphorylation, Pak1 and Pak2 differentially modulate focal adhesions. Pak2-depleted cells display an increase in focal adhesion size, whereas in Pak1-depleted cells, focal adhesions fail to mature. We also found that the depletion of Pak2, but not Pak1, enhances RhoA activity and that the inhibition of RhoA signaling in Pak2-depleted cells decreases MLC phosphorylation and restores cell invasion. In summary, this work presents the first comprehensive analysis of functional differences between the Pak1 and Pak2 isoforms.  相似文献   

19.
We have used mouse embryonic fibroblasts (MEFs) devoid of Ras proteins to illustrate that they are essential for proliferation and migration, but not for survival, at least in these cells. These properties are unique to the Ras subfamily of proteins because ectopic expression of other Ras‐like small GTPases, even when constitutively active, could not compensate for the absence of Ras proteins. Only constitutive activation of components of the Raf/Mek/Erk pathway was sufficient to sustain normal proliferation and migration of MEFs devoid of Ras proteins. Activation of the phosphatidylinositol 3‐kinase (PI3K)/PTEN/Akt and Ral guanine exchange factor (RalGEF)/Ral pathways, either alone or in combination, failed to induce proliferation or migration of Rasless cells, although they cooperated with Raf/Mek/Erk signalling to reproduce the full response mediated by Ras signalling. In contrast to current hypotheses, Ras signalling did not induce proliferation by inducing expression of D‐type Cyclins. Rasless MEFs had normal levels of Cyclin D1/Cdk4 and Cyclin E/Cdk2. However, these complexes were inactive. Inactivation of the pocket proteins or knock down of pRb relieved MEFs from their dependence on Ras signalling to proliferate.  相似文献   

20.
During development of multicellular organisms, cells respond to extracellular cues through nonlinear signal transduction cascades whose principal components have been identified. Nevertheless, the molecular mechanisms underlying specificity of cellular responses remain poorly understood. Spatial distribution of signaling proteins may contribute to signaling specificity. Here, we tested this hypothesis by investigating the role of the Rab5 effector Appl1, an endosomal protein that interacts with transmembrane receptors and Akt. We show that in zebrafish, Appl1 regulates Akt activity and substrate specificity, controlling GSK-3beta but not TSC2. Consistent with this pattern, Appl1 is selectively required for cell survival, most critically in highly expressing tissues. Remarkably, Appl1 function requires its endosomal localization. Indeed, Akt and GSK-3beta, but not TSC2, dynamically associate with Appl1 endosomes upon growth factor stimulation. We propose that partitioning of Akt and selected effectors onto endosomal compartments represents a key mechanism contributing to the specificity of signal transduction in vertebrate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号