首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of calcium in control of HCl secretion by the gastric parietal cell was examined using a recently available intracellular calcium-releasing agent, thapsigargin, which has been shown, in some cell types, to induce sustained elevation of intracellular calcium ([Ca2+]i), an action that appears to be independent of inositol lipid breakdown and protein kinase C activation and to be mediated, at least partially, by selective inhibition of endoplasmic reticulum Ca2(+)-ATPase. Using the calcium-sensitive fluorescent probe, fura-2, in combination with digitized video image analysis of single cells as well as standard fluorimetric techniques, we found that thapsigargin induced sustained elevation of [Ca2+]i in single parietal cells and in parietal cells populations. Chelation of medium calcium led to a transient rise and fall in [Ca2+]i, indicating that the sustained elevation in [Ca2+]i in response to thapsigargin was due to both intracellular calcium release and influx. Although thapsigargin appeared to affect the same calcium pool(s) regulated by the cholinergic agonist, carbachol, and the pattern of thapsigargin-induced increases in [Ca2+]i were similar to the plateau phase of the cholinergic response, thapsigargin did not induce acid secretory responses of the same magnitude as those initiated by carbachol (28 vs 600% of basal). The protein kinase C activator, 12-O-tetradecanoyl phorbol-13-acetate (TPA) potentiated the secretory response to thapsigargin but this combined response also did not attain the same magnitude as the maximal cholinergic response. In the presence but not the absence of medium calcium, thapsigargin potentiated acid secretory responses to histamine, which elevate both cyclic AMP (cAMP) and [Ca2+]i in parietal cells, as well as forskolin and cAMP analogues but had no effect on submaximal and an inhibitory effect on maximal cholinergic stimulation. Furthermore, thapsigargin did not fully mimic potentiating interactions between histamine and carbachol, either in magnitude or in the pattern of temporal response. Assuming that the action of thapsigargin is specific for intracellular calcium release mechanisms, these data suggest that 1) sustained influx of calcium is necessary but not sufficient for cholinergic activation of parietal cell HCl secretion and for potentiating interactions between cAMP-dependent agonists and carbachol; 2) mechanisms in addition to elevated [Ca2+]i and protein kinase C activation may be involved in cholinergic regulation; and 3) increases in [Ca2+]i in response to histamine are not directly involved in the mechanism of histamine-stimulated secretion.  相似文献   

2.
Activation of stably expressed M(2) and M(3) muscarinic acetylcholine receptors (mAChRs) as well as of endogenously expressed lysophosphatidic acid and purinergic receptors in HEK-293 cells can induce a long lasting potentiation of phospholipase C (PLC) stimulation by these and other G protein-coupled receptors (GPCRs). Here, we report that GPCRs can induce an up-regulation of PLC stimulation by receptor tyrosine kinases (RTKs) as well and provide essential mechanistic characteristics of this sensitization process. Pretreatment of HEK-293 cells for 2 min with carbachol, a mAChR agonist, lysophosphatidic acid, or ATP, followed by agonist washout, strongly increased (by 2-3-fold) maximal PLC stimulation (measured >/=40 min later) by epidermal growth factor and platelet-derived growth factor, but not insulin, and largely enhanced PLC sensitivity to these RTK agonists. The up-regulation of RTK-induced PLC stimulation was cycloheximide-insensitive and was observed for up to approximately 90 min after removal of the GPCR agonist. Sensitization of receptor-induced PLC stimulation caused by prior M(2) mAChR activation was fully prevented by pertussis toxin and strongly reduced by expression of Gbetagamma scavengers. Furthermore, inhibition of conventional protein kinase C (PKC) isoenzymes and chelation of intracellular Ca(2+) suppressed the sensitization process, while overexpression of PKC-alpha, but not PKC-betaI, further enhanced the M(2) mAChR-induced sensitization of PLC stimulation. None of these treatments affected acute PLC stimulation by either GPCR or RTK agonists. Taken together, short term activation of GPCRs can induce a strong and long lasting sensitization of PLC stimulation by RTKs, a process apparently involving G(i)-derived Gbetagammas as well as increases in intracellular Ca(2+) and activation of a PKC isoenzyme, most likely PKC-alpha.  相似文献   

3.
Regulation of calcium efflux from isolated rat parotid cells   总被引:5,自引:0,他引:5  
Calcium efflux from isolated rat parotid acinar cells was studied with 45Ca. Carbachol, phenylephrine, substance P, monobutyryl cyclic AMP and isoproterenol stimulated 45Ca efflux. It is suggested that carbachol, phenylephrine and substance P mobilize the same pool of cellular Ca. This suggestion is based on two observations. Firstly, combinations of any two of these three agonists at saturating concentrations result in no more 45Ca efflux than either agonist alone. Secondly, stimulation of 45Ca efflux by any one of the three agonists prevents further stimulation of 45Ca efflux by the same or one of the other two agonists. The pool of calcium mobilized by isoproterenol or monobutyryl cyclic AMP is different from the pool mobilized by carbachol. This conclusion is based on the observation that stimulation of 45Ca efflux by a saturating concentration of carbachol did not inhibit stimulation of 45Ca efflux by isoproterenol. Furthermore the effect of a saturating concentration of isoproterenol on 45Ca efflux is additive with that caused by a saturating concentration of carbachol. The effect of carbachol, phenylephrine and substance P on 45Ca2+ efflux did not require extracellular Ca2+.  相似文献   

4.
Abstract: The involvement of a purinergic system in the mechanisms of ATP- and electrically induced long-term potentiation (LTP) has been investigated in mouse hippocampal slices. Extracellular ATP (500 n M ) and its slowly hydrolyzable analogue adenosine 5'- O -(3-thiotriphosphate) (ATP-γ-S; 2.5 µ M ) amplified permanently the magnitude of the population spike. This effect was antagonized by adenylimidodiphosphate (AMPPNP), a non-hydrolyzable analogue of ATP. AMPPNP, other ATP analogues [2-methylthioadenosine triphosphate (2-MeSATP) and α,β-methyleneadenosine 5'-triphosphate (α,β-methyleneATP)], or a purinergic receptor antagonist (Cibacron Blue 3G) tested in the concentration range of 3–40 µ M did not exert agonistic activity similar to that of ATP or ATP-γ-S, suggesting that ATP hydrolysis is required to exert this effect. All the tested nonhydrolyzable analogues reduced or prevented the establishment of stable, nondecremental LTP without blocking the short-lasting increase in the magnitude of the population spike immediately after electrical stimulation (short-term potentiation). These results indicate that ATP released by high-frequency stimulation contributes to the maintenance of stable LTP. The underlying mechanism operating in this process may involve a new type of ATP receptors or hydrolysis by ecto-ATPase. However, the findings that ATP-γ-S is less potent than ATP and that other ATP analogues known to act as agonists of purinergic receptors did not induce LTP but rather inhibited its maintenance are more consistent with the possibility that ecto-protein kinase, using extracellular ATP as a cosubstrate, plays a role in mechanisms underlying synaptic plasticity.  相似文献   

5.
The purpose of this study is to investigate if the cholinergic stimulation by carbachol on tear secretion is a direct process or if it is also mediated by purinergic mechanisms. Experiments were performed in New Zealand male rabbits. The amount of tear secretion was measured with Schirmer’s test and then analyzed by a HPLC protocol in order to study the nucleotide levels. Animal eyes were instilled with carbachol (a cholinergic agonist), pirenzepine, gallamine and 4-DAMP (muscarinic antagonists), PPADS, suramin and reactive blue 2 (purinergic antagonists), and a P2Y2 receptor small interfering RNA (siRNA). Tear secretion increased with the instillation of carbachol, approximately 84 % over control values 20 min after the instillation and so did Ap4A and ATP release. When we applied carbachol in the presence of muscarinic antagonists, tear volume only increased to 4 % with atropine, 12 % in the case of pirenzepine, 3 % with gallamine, and 8 % with 4-DAMP. In the presence of carbachol and purinergic antagonists, tear secretion was increased to 12 % (all values compared to basal tear secretion). By analyzing tear secretion induced with carbachol in presence of a P2Y2 receptor siRNA, we found that tear secretion was diminished to 60 %. The inhibition of tear secretion in the presence of carbachol and purinergic antagonists or P2Y2 siRNA occurred with no apparent change in the tear amount of Ap4A. These experiments demonstrated the participation of Ap4A in lacrimal secretion process.  相似文献   

6.
Isoprostanes are generated during periods of oxidative stress, which characterize diseases such as asthma and cystic fibrosis. They also elicit functional responses and may therefore contribute to the pathology of these diseases. We set out to examine the effects of isoprostanes on airway responsiveness to cholinergic stimulation. Muscle bath techniques were employed using isolated bovine tracheal smooth muscle. 8-Isoprostaglandin E2 (8-iso-PGE2) increased tone directly on its own, although the magnitude of this response, even at the highest concentration tested, was only a fraction of that evoked by KCl or carbachol. More importantly, though, pretreatment of the tissues with 8-iso-PGE2 (10 microM) markedly augmented responses to submaximal and even subthreshold concentrations of KCl, carbachol, or histamine, whereas maximal responses to these agents were unaffected by the isoprostane. The augmentative effect on cholinergic responsiveness was mimicked by PGE2 (0.1 microM) and by the FP agonists PGF2 (0.1 microM) and fluprostenol (0.1 microM), but not by the EP3 agonist sulprostone (0.1 microM) or the TP agonist U-46619 (0.1 microM). Antagonists of EP1 receptors (AH-6809 and SC-19920, 10 microM) and TP receptors (ICI-192605, 1 microM) had no effect on 8-iso-PGE2-induced augmentation of cholinergic responsiveness. We conclude that 8-iso-PGE2 induces nonspecific airway smooth muscle hyperresponsiveness through a non-TP non-EP prostanoid receptor.  相似文献   

7.
The N-methyl-D-aspartate (NMDA) receptor of rat cerebellar granule cells in primary culture is inhibited by phospholipase C-coupled receptor activation. In the absence of ionotropic agonist, cells modulate their cytoplasmic free Ca2+, [Ca2+]c, in response to stimulation of M3 muscarinic receptors, metabotropic glutamate receptors, and endothelin receptors by the respective agonists carbachol, trans-1-amino-1,3-cyclopentanedicarboxylic acid, and endothelin-1. The response is consistent with the ability of phospholipase C-coupled receptors to release a pool of intracellular Ca2+ and induce a subsequent Ca2+ entry into the cell; both of these responses can be abolished by discharge of internal Ca2+ stores with low concentrations of ionomycin or thapsigargin. In the case of cells stimulated with NMDA, the [Ca2+]c response to the phospholipase C-coupled agonists is complex and agonist dependent; however, in the presence of ionomycin each agonist produces a partial inhibition of the NMDA component of the [Ca2+]c signal. This inhibition can be mimicked by the protein kinase C activator 4 beta-phorbol 12,13-dibutyrate. It is concluded that NMDA receptors on cerebellar granule cells are inhibited by phospholipase C-coupled muscarinic M3, glutamatergic, and endothelin receptors via activation of protein kinase C.  相似文献   

8.
The effect that chronic subcutaneous infusion of alpha- and beta-adrenergic and cholinergic agonists on plasma and atrial ANF was investigated. Isoproterenol, a beta-adrenergic agonist, and carbachol, a cholinergic agonist produced a 3-fold increase in plasma ANF levels which were constant until the end of the infusion period. An increased natriuresis was observed in the same groups which was positively correlated with plasma ANF. No differences were observed in atrial content of ANF between the experimental groups. A sharp post-surgery decline in plasma ANF was observed in control, phenylephrine and epinephrine-treated groups which was maintained during the observation period of five days. This suggests that the rise in plasma ANF induced by isoproterenol and carbachol may be secondary to hemodynamic changes and not to direct receptor stimulation, and may play a role in the observed natriuresis. It is also suggested that the depression of plasma ANF may contribute to the well known post-surgery sodium retention.  相似文献   

9.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

10.
Stimulation of brown adipocytes by their sympathetic innervation plays a major role in body energy homeostasis by regulating the energy- wasting activity of the tissue. The norepinephrine released by sympathetic activity acts on adrenergic receptors to activate a variety of metabolic and membrane responses. Since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. We find that micromolar concentrations of extracellular ATP initiates profound changes in the membrane trafficking of brown adipocytes. ATP elicited substantial increases in total cell membrane capacitance, averaging approximately 30% over basal levels and occurring on a time scale of seconds to minutes. The membrane capacitance increase showed an agonist sensitivity of 2-methylthio-ATP > or = ATP > ADP > > adenosine, consistent with mediation by a P2r type purinergic receptor. Membrane capacitance increases were not seen when cytosolic calcium was increased by adrenergic stimulation, and capacitance responses to ATP were similar in the presence and absence of extracellular calcium. These results indicate that increases in cytosolic calcium alone do not mediate the membrane response to ATP. Photometric assessment of surface-accessible membrane using the dye FM1- 43 showed that ATP caused an approximate doubling of the amount of membrane actively trafficking with the cell surface. The discrepancy in the magnitudes of the capacitance and fluorescence changes suggests that ATP both activates exocytosis and alters other aspects of membrane handling. These findings suggest that secretion, mobilization of membrane transporters, and/or surface membrane expression of receptors may be regulated in brown adipocytes by P2r purinergic receptor activity.  相似文献   

11.
The purpose of the present study was to determine whether an increased plasma corticosterone or dexamethasone levels induced by a single corticosterone or dexamethasone injection to conscious rats affects the hypothalamic-pituitary-adrenocortical (HPA) activity induced by adrenergic and cholinergic agonists. Male Wistar rats were pretreated subcutaneously (s.c.) with a single dose of dexamethasone (5 mg/kg) or corticosterone (25 mg/kg) 24 or 48 h before intraperitoneal (i.p.) administration of adrenergic agonists: phenylephrine, an alpha1-adrenergic receptor agonist, clenbuterol, a beta2-adrenergic agonist and noradrenaline acting predominantly on alpha1-adrenoreceptors, and cholinergic agonists: carbachol, a predominant muscarinic receptor agonist and nicotine, a nicotinic receptor agonist. Dexamethasone profoundly decreased the resting ACTH levels in control rats and given 24 h before each of the stimulatory agonist abolished the adrenergic- and cholinergic agonists-induced ACTH and corticosterone responses. Pretreatment with corticosterone of control rats did not substantially alter the resting plasma ACTH and serum corticosterone levels measured 24 and 48 h later. A single pretreatment with corticosterone abolished or powerfully inhibited, perhaps by a feedback mechanism, the ACTH and corticosterone responses induced 24 and 48 h later by all adrenergic and cholinergic agonists used in this study. These results indicate that prolonged administration of corticosterone is not necessary to induce almost complete suppression of the HPA responsiveness to adrenergic or cholinergic stimulation. Chronic treatment with corticosteroids to achieve glucocorticoid receptors desensitization does not seem to be required.  相似文献   

12.
This study examined the changes in protein phosphorylation in response to cholinergic (muscarinic) stimulation of salivary secretion in the rat submandibular gland. Carbachol stimulation was associated with phosphorylation in a number of protein bands as detected by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and autoradiography. The molecular masses (Mr) of two proteins, in which the amount of phosphorylation more than doubled in response to carbachol, were 22,000 and 96,000. The Mr 96,000 protein precipitated at 120,000 X g while most of the Mr 22,000 protein remained in the supernatant at this speed. The effect of carbachol on the phosphorylation of the Mr 22,000 and 96,000 proteins was blocked by atropine, indicating that the cholinergic receptor involved is muscarinic. The time course of phosphorylation of the Mr 22,000 protein consisted of a rapid increase in phosphorylation within the first min of carbachol stimulation. This increased phosphorylation persisted for less than 1 min. The increased phosphorylation of the Mr 96,000 protein also occurred within the first min but it persisted for at least 10 min. However, removal of the muscarinic agonist, carbachol, resulted in the rapid dephosphorylation of this protein. When the plasma membranes were purified, the Mr 96,000 protein was phosphorylated by ATP in the presence of Na+ and Mg2+. It was dephosphorylated by K+. This proves that the Mr 96,000 dalton protein is the alpha-subunit of the (Na+ + K+)-ATPase.  相似文献   

13.
14.
When dispersed chief cells from guinea pig stomach were first incubated with carbachol, washed, and then reincubated with carbachol in fresh incubation solution, the stimulation of pepsinogen secretion and the rise in intracellular calcium concentration during the second incubation were reduced. Carbachol did not cause residual enzyme secretion, but the same range of concentrations that causes enzyme secretion caused desensitization that was rapid, temperature dependent, and reversible with time. Preincubation with carbachol caused approximately a 65% reduction in enzyme secretion stimulated during a subsequent incubation with this agonist, but the potency of carbachol was unaffected. Prior exposure to carbachol also reduced subsequent stimulation caused by cholecystokinin (CCK-8), gastrin I, ionophore A23187, or 12-O-tetradecanoylphorbol 13-acetate but did not alter stimulation by any agonist that increases cellular cAMP. Carbachol pretreatment of Fura-loaded chief cells caused a threefold increase in the EC50 for carbachol-stimulated [Ca2+]i and approximately a 30% reduction in the maximal rise in [Ca2+]i in response to carbachol or CCK-8. Inhibition of [N-methyl-3H] scopolamine binding by carbachol following carbachol pretreatment indicated that modulation of receptor affinity or number did not account for functional desensitization. These data indicate that carbachol causes heterologous desensitization of pepsinogen secretion stimulated by agonists that mobilize cellular Ca2+ or activate protein kinase C through a postreceptor action and suggest that an attenuated rise in chief cell calcium is one mechanism mediating the desensitization of enzyme secretion.  相似文献   

15.
The effects of the muscarinic agonist carbachol, histamine and bradykinin on incorporation of [3H]inositol into the phosphoinositides and the formation of [3H]InsPs were examined in bovine tracheal smooth-muscle (BTSM) slices labelled with [3H]inositol. These agonists result in substantial and dose-related increases in the incorporation of [3H]inositol into the phospholipids. Carbachol and histamine stimulated the incorporation of [3H]inositol into the phospholipids to the same degree, despite histamine being only 35% as effective as carbachol on [3H]InsP accumulation. Histamine and carbachol, at maximal concentrations, were non-additive with respect to both the stimulated incorporation of [3H]inositol and [3H]InsP formation. For carbachol this effect on incorporation was found to occur to a similar extent in PtdInsP and PtdInsP2 as well as PtdIns. The initial effect of carbachol on [3H]inositol incorporation was rapid (maximal by 10 min); however, with prolonged stimulation large secondary declines in PtdInsP and PtdInsP2 labelling were observed, with depletion of the much larger PtdIns pool only evident in the presence of Li+. Lowering buffer [Ca2+] increased the incorporation of [3H]inositol under basal conditions, but did not attenuate the subsequent agonist-stimulated incorporation effect. The large changes in specific radioactivity of the phosphoinositides, and consequently the [3H]InsP products, after carbachol stimulation resulted in the apparent failure of atropine to reverse the [3H]InsP response completely. Labelling muscle slices with [3H]inositol in the presence of carbachol or labelling for longer periods (greater than 6 h) prevented subsequent carbachol-stimulated effects on incorporation without significantly altering the dose-response relationship for carbachol-stimulated [3H]InsP formation and resulted in steady-state labelling conditions confirmed by the ability of atropine to reverse fully the [3H]InsP response to carbachol. This study demonstrates the profound effects of a number of agonists on [3H]inositol incorporation into the phospho- and polyphosphoinositides in BTSM with important consequent changes in the specific radioactivity of these lipids and the resulting [3H]InsP products. In addition, a selective depletion of PtdInsP and PtdInsP2 over PtdIns has been demonstrated with prolonged muscarinic-receptor stimulation.  相似文献   

16.
Caveolin-1 (Cav1), a structural protein of caveolae, plays cell- and context-dependent roles in signal transduction pathway regulation. We have generated a knockout mouse homozygous for a null mutation of the Cav1 gene. Cav1 knockout mice exhibited impaired urinary bladder contractions in vivo during cystometry. Contractions of male bladder strips were evoked with electric and pharmacologic stimulation (5–40 Hz, 1–10 μM carbachol, 10 mM ,β-methylene ATP, 100 mM KCl). Acetylcholine (ACh) and norepinephrine (NE) release from bladder strips were measured with a radiochemical method by incubating the strips with 14C-choline and 3H-NE prior to electric stimulation, whereas ATP release was measured using the luciferin-luciferase assay with a luminometer. A 60–75% decline in contractility was observed when Cav1 knockout muscle strips were stimulated with electric current or carbachol, compared to wildtype muscle strips. No difference in contractility was noted when contractions were evoked either by the purinergic agonist ,β-methylene ATP, or by extracellular potassium. To investigate the relative contribution of non-cholinergic activity to bladder contractility, the amplitude of the electric stimulation-evoked contractions was compared in the presence of the muscarinic antagonist atropine (1 μM). While the non-muscarinic (purinergic) response was unaltered, muscarinic cholinergic response was principally disrupted in Cav1 knockout mice. The loss of Cav1 gene expression was also associated with a 70% reduction in ACh release. NE and ATP release was not altered. It is concluded that the loss of caveolin-1 is associated with disruption of M3 muscarinic cholinergic activity in the bladder. Both pre-junctional (acetylcholine neurotransmitter release from neuromuscular junctions) and post-junctional (M3 receptor-mediated signal transduction in bladder smooth muscles) mechanisms are disrupted, resulting in impaired bladder contraction.  相似文献   

17.
Intracellular free Ca2+ was monitored in suspensions of 1321N1 astrocytoma cells by using the Ca2+ indicator fura-2. The cytoplasmic Ca2+ concentration increased from 237 +/- 6 nM to 1580 +/- 170 nM within 3-5 s of addition of 300 microM-carbachol. After the peak in response, the Ca2+ concentration diminished, establishing a new steady state in about 1 min that was approx. 150 nM above the previous baseline. Histamine increased cytoplasmic Ca2+ to about 40% of the maximal value seen with carbachol. In Ca2+-free buffer each agonist elicited a normal initial increase in cytoplasmic Ca2+, but the sustained portion of the response was abolished. The increase in Ca2+ in response to either carbachol or histamine could be completely inhibited by pretreating the cells with carbachol; the response to carbachol could be partially inhibited by pretreating the cells with histamine. The Ca2+ responses did not recover in the continued presence of carbachol. However, if the carbachol was washed out or if atropine was added after carbachol, the responses to agonist recovered in a time-dependent manner (half-time 3-4 min), and recovery depended on the presence of extracellular calcium. The results indicate that carbachol and histamine stimulate release of Ca2+ from the same intracellular Ca2+ store, that depletion of this store is responsible for heterologous desensitization between these two agonists, and that repletion of the agonist-sensitive Ca2+ pool does not occur in the continued presence of agonist or in the absence of extracellular Ca2+.  相似文献   

18.
The energy providing substrate ATP can be released from various cells and act extracellularly to regulate the same cells or neighboring cells. However, the pathway for ATP release and the eliciting physiological stimulus are unclear. Recently, we showed that ATP activates P2X and P2Y purinergic receptors on pancreatic ducts. Thus, it was relevant to ask whether the upstream acini could be the source of releasable ATP and what the stimulus might be. We used freshly prepared rat pancreatic acini and applied conventional luminescence measurements of luciferin/luciferase reaction. As a new application of this reaction in confocal microscopy, we monitored luciferin fluorescence as a sign of ATP release by single acini. In addition we used quinacrine to mark ATP stores, which were similar to those marked with fluorescent ATP, 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate, but only partially overlapping with those marked by acridine orange and LysoTracker Red. In functional studies we show that native pancreatic acini release ATP in response to various stimuli but most importantly to cholinergic stimulation, a very likely physiological stimulus in this epithelium. In a close vicinity of acini we detect about 9 microm ATP after cholinergic stimulation. Thus, ATP is poised as the paracrine mediator between pancreatic acini and ducts.  相似文献   

19.
Cultured cerebellar granule cells express phospholipase C-coupled muscarinic cholinergic, histaminergic, alpha 1-adrenergic, and serotonergic receptors. In an attempt to study desensitization of these neurotransmitter receptors, cells were prestimulated with saturating concentrations of carbachol, histamine, norepinephrine, or serotonin during the labeling of cells with myo-[3H]inositol and then rechallenged with various receptor agonists for their ability to elicit accumulation of [3H]inositol monophosphate in the presence of lithium. Prestimulation with each of these receptor agonists was found to cause a time-dependent desensitization to subsequent stimulation with the desensitizing agonist. Thus, prestimulation for 0.5, 4, and 18 h decreased carbachol response to 87 +/- 4, 52 +/- 2, and 40 +/- 1% of the control, respectively; histamine response to 37 +/- 2, 24 +/- 2, and 18 +/- 2%, respectively; norepinephrine response to 55 +/- 5, 14 +/- 1, and 10 +/- 1%, respectively; and serotonin response to 36 +/- 1, 18 +/- 1, and 9 +/- 2%, respectively. In all cases, the responses mediated by receptors which were not prestimulated remained virtually unchanged, thus indicating homologous desensitization. Dose-response studies indicate that the desensitization was associated with a major reduction in the maximal extent of agonist-induced responses. The basal accumulation was markedly enhanced following 0.5- and 4-h prestimulation, but returned to near normal after 18-h pretreatment. Biologically active phorbol ester, 4 beta-phorbol 12-myristate 13-acetate, rapidly attenuated basal phospholipase C activity, as well as the responses mediated by carbachol, histamine, norepinephrine, and serotonin, suggesting that activation and translocation of protein kinase C might play a role in the desensitization of phospholipase C-coupled receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We describe the effects of lanthanum on protein secretion, potassium efflux, calcium uptake and phosphatidylinositol turnover stimulated by cholinergic agonists in rat parotid glands. Carbachol increases in vitro calcium uptake, protein secretion and K+ efflux through muscarinic receptor; however it fails to stimulate protein discharge or K+ release in a incubation medium free of calcium. Lanthanum inhibits calcium uptake, protein secretion and K+ efflux induced by carbachol without impairing protein discharge stimulated by norepinephrine through the beta-adrenergic receptor. Norepinephrine, in the presence of calcium in the incubation medium, stimulates the K+ efflux through the alpha-adrenergic receptor: this effect is suppressed by lanthanum. These results emphasize the role of increased influx of calcium in the cellular phenomena controlled by muscarinic or alpha-adrenergic receptors. Carbachol increases phosphatidylinositol turnover in the absence of calcium in extracellular medium; indeed it is shown that carbachol increases the rate of phosphatidylinositol breakdown and that lanthanum impairs this cholinergic effects. From these data it is suggested that the interaction between cholinergic agonist and muscarinic receptor could induce a stimulation of 'phosphatidylinositol turnover' which could control the calcium influx according to the gradient through the plasmalemma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号