首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
J Yang  G Schuster    D B Stern 《The Plant cell》1996,8(8):1409-1420
Correct 3' processing of chloroplast precursor mRNAs (pre-mRNAs) requires a stem-loop structure within the 3' untranslated region. In spinach, a stable 3' stem-loop-protein complex has been shown to form in vitro between petD pre-mRNA, encoding subunit IV of the cytochrome b6/f complex, and chloroplast proteins. This complex contains three chloroplast stem-loop binding proteins (CSPs), namely, CSP29, CSP41, and CSP55. Here, we report the purification of CSP41 and cloning of the csp41 gene and show that CSP41 is encoded by a single nuclear gene. Characterization of bacterially expressed CSP41 demonstrates that this protein binds specifically to the 3' stem-loop structure and a downstream AU-rich element of petD pre-mRNA and that its binding affinity is enhanced by associating with CSP55. Our data also show that CSP41 has substantial nonspecific endoribonuclease activity. These data suggest that CSP41 could be involved in 3' processing of petD pre-mRNA and/or in RNA degradation. The fact that different reaction conditions favor RNA binding over ribonuclease activities suggests a possible mode of in vivo regulation.  相似文献   

4.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

5.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

6.
7.
Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7Lb within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.  相似文献   

8.
Bacillus stearothermophilus large ribosomal subunits were reconstituted in the presence of 5S rRNAs from different origins and tested for their biological activities. The results obtained have shown that eubacterial and archaebacterial 5S rRNAs can easily substitute for B. stearothermophilus 5S rRNA in the reconstitution, while eukaryotic 5S rRNAs yield ribosomal subunits with reduced biological activities. From our results we propose an interaction between nucleotides 42-47 of 5S rRNA and nucleotides 2603-2608 of 23S rRNA during the assembly of the 50S ribosomal subunit. Other experiments with eukaryotic 5.8S rRNAs reveal, if at all, a very low incorporation of these RNA species into the reconstituted ribosomes.  相似文献   

9.
In this study, we show that the Saccharomyces cerevisiae ORF YBR142w, which encodes a putative DEAD-box RNA helicase, corresponds to MAK5. The mak5-1 allele is deficient in the maintenance of the M1 dsRNA virus, resulting in a killer minus phenotype. This allele carries two mutations, G218D in the conserved ATPase A-motif and P618S in a non-conserved region. We have separated these mutations and shown that it is the G218D mutation that is responsible for the killer minus phenotype. Mak5p is an essential nucleolar protein; depletion of the protein leads to a reduction in the level of 60S ribosomal subunits, the appearance of half-mer polysomes, and a delay in production of the mature 25S and 5.8S rRNAs. Thus, Mak5p is involved in the biogenesis of 60S ribosomal subunits.Communicated by F. Messenguy  相似文献   

10.
Ribosome development was followed by electron microscopy and gel electrophoresis of ribosomal (r)RNAs in the plastids of fully expanded fruits of Capsicum annuum L. during ripening. Chloroplasts from young Capsicum leaves were used as a structural and electrophoretic standard. Four stages were distinguished on the basis of colour changes during fruit ripening. Chloroplasts of the green fruit had a lower content of 16S and 23S rRNAs than leaf chloroplasts. They contained only a few ribosomes, some more discrete ribosomal particles, and the contrast of ribosomal structures was faint. From the outset of ripening, most of the ribosomal structures in the plastid stroma disappeared. A continuous decrease in plastid rRNAs occurred during ripening. Fully differentiated chromoplasts of the red fruit did not contain rRNAs or ribosomes. Throughout plastid development, DNA nucleoids were evident and there was only a small decrease in the DNA peak on electrophoretograms. The loss of ribosomes during the chloroplast-to-chromoplast conversion in Capsicum fruit is discussed in relation to the variations in pigments and enzymic systems in both plastid types.Abbreviations Developmental stages of leaves and fruits: A four-week-old green leaf - B green fruit - C brownish fruit - D orange fruit - E red fruit - ptRNA, DNA plastid RNA - DNA; rRNA ribosomal RNA  相似文献   

11.
12.
Temperature-sensitive mutants defective in 60S ribosomal subunit protein L16 of Saccharomyces cerevisiae were isolated through hydroxylamine mutagenesis of the RPL16B gene and plasmid shuffling. Two heat-sensitive and two cold-sensitive isolates were characterized. The growth of the four mutants is inhibited at their restrictive temperatures. However, many of the cells remain viable if returned to their permissive temperatures. All of the mutants are deficient in 60S ribosomal subunits and therefore accumulate translational preinitiation complexes. Three of the mutants exhibit a shortage of mature 25S rRNA, and one accumulates rRNA precursors. The accumulation of rRNA precursors suggests that ribosome assembly may be slowed in this mutant. These phenotypes lead us to propose that mutants containing the rpl16b alleles are defective for 60S subunit assembly rather than function. In the mutant carrying the rpl16b-1 allele, ribosomes initiate translation at the noncanonical codon AUA, at least on the rpl16b-1 mRNA, bringing to light a possible connection between the rate and the fidelity of translation initiation.  相似文献   

13.
14.
15.
D Kressler  M Rojo  P Linder    J Cruz 《Nucleic acids research》1999,27(23):4598-4608
Several mutants ( spb1 - spb7 ) have been previously identified as cold-sensitive extragenic suppressors of loss-of-function mutations in the poly(A)(+)-binding protein 1 of Saccharomyces cerevisiae. Cloning, sequence and disruption analyses revealed that SPB1 (YCL054W) encodes an essential putative S -adenosylmethionine-dependent methyltransferase. Polysome analyses showed an under-accumulation of 60S ribosomal subunits in the spb1-1 mutant and in a strain genetically depleted of Spb1p. Northern and primer extension analyses indicated that this was due to inhibition of processing of the 27SB precursors, which results in depletion of the mature 25S and 5.8S rRNAs. At later time points of Spb1p depletion, the stability of 40S ribosomal subunits is also affected. These results suggest that Spb1p is involved in 60S ribosomal subunit biogenesis and associates early with the pre-ribosomes. Consistent with this, hemagglutinin epitope-tagged Spb1p localizes to the nucleus with nucleolar enrichment. Despite the expected methyltransferase activity of Spb1p, global methylation of pre-rRNA is not affected upon Spb1p depletion. We propose that Spb1p is required for proper assembly of pre-ribosomal particles during the biogenesis of 60S ribosomal subunits.  相似文献   

16.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

17.
The synthesis of ribosomes in eukaryotes involves processing of pre-ribosomal RNA (pre-rRNA) and sequential assembly of a large number of ribosomal proteins on the rRNAs. Although we have gained tremendous insights into the processing of pre-rRNA intermediates in the last three decades, little was known about the dynamic nature of ribosome biogenesis. Only recently the development of efficient affinity-purification procedures and mass-spectrometry techniques has allowed the isolation of large pre-ribosomal complexes, which led to the identification of several ribosome assembly intermediates and a large number of novel ribosome assembly factors. In this mini-review, we summarize some of the discoveries that have been made in the field of ribosome biogenesis in the past 30 years and highlight some key aspects about what remains to be learned.  相似文献   

18.
Ribosomal activity of the 16 S.23 S RNA complex   总被引:1,自引:0,他引:1  
It has been demonstrated in this laboratory that 16 S and 23 S RNAs form a binary complex like 30 S and 50 S ribosomes under certain specific conditions, and 5 S RNA can be incorporated into the complex in stoichiometric amounts in presence of three ribosomal proteins, L5, L18, and L15/25. These studies raised the basic question of whether such complex will have biological activity. Therefore, the following steps in protein synthesis were examined with the complex in place of the ribosomes: (i) poly-U-dependent binding of phenylalanyl tRNA; (ii) EF-G-dependent GTPase activity; (iii) initiation complex formation; (iv) peptidyl transferase activity; and (v) poly-U-dependent polyphenylalanine synthesis. All the steps could be unequivocally demonstrated by the addition of a limited number of proteins although the complex had comparatively much less activity than 70 S ribosomes. It appears that rRNAs are directly involved in various steps of protein synthesis. Furthermore, the 16 S.23 S RNA complex might have acted as a primitive ribosome, as suggested by Crick and Orgel.  相似文献   

19.
A late-acting quality control process for mature eukaryotic rRNAs   总被引:1,自引:0,他引:1  
Ribosome biogenesis is a multifaceted process involving a host of trans-acting factors mediating numerous chemical reactions, RNA conformational changes, and RNA-protein associations. Given this high degree of complexity, tight quality control is likely crucial to ensure structural and functional integrity of the end products. We demonstrate that ribosomal RNAs (rRNAs) containing individual point mutations, in either the 25S peptidyl transferase center or 18S decoding site, that adversely affect ribosome function are strongly downregulated in Saccharomyces cerevisiae. This downregulation occurs via decreased stability of the mature rRNA contained in fully assembled ribosomes and ribosomal subunits. Thus, eukaryotes possess a quality-control mechanism, nonfunctional rRNA decay (NRD), capable of detecting and eliminating the rRNA component of mature ribosomes.  相似文献   

20.
Spb4p is a putative ATP-dependent RNA helicase that is required for synthesis of 60S ribosomal subunits. Polysome analyses of strains genetically depleted of Spb4p or carrying the cold-sensitive spb4-1 mutation revealed an underaccumulation of 60S ribosomal subunits. Analysis of pre-rRNA processing by pulse-chase labeling, northern hybridization, and primer extension indicated that these strains exhibited a reduced synthesis of the 25S/5.8S rRNAs, due to inhibition of processing of the 27SB pre-rRNAs. At later times of depletion of Spb4p or following transfer of the spb4-1 strain to more restrictive temperatures, the early pre-rRNA processing steps at sites A0, Al, and A2 were also inhibited. Sucrose gradient fractionation showed that the accumulated 27SB pre-rRNAs are associated with a high-molecular-weight complex, most likely the 66S pre-ribosomal particle. An HA epitope-tagged Spb4p is localized to the nucleolus and the adjacent nucleoplasmic area. On sucrose gradients, HA-Spb4p was found almost exclusively in rapidly sedimenting complexes and showed a peak in the fractions containing the 66S pre-ribosomes. We propose that Spb4p is involved directly in a late and essential step during assembly of 60S ribosomal subunits, presumably by acting as an rRNA helicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号