首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) residue and leads to the separation of the N- and C-terminal parts of U2AF65. The U2AF65 N-terminal fragment mainly accumulates in the nucleus within nuclear bodies (nucleoli-like pattern) and to a much lesser extent in the cytoplasm, whereas the C-terminal fragment is found in the cytoplasm, even in localization studies on apoptosis induction. From a functional viewpoint, the N-terminal fragment promotes Fas exon 6 skipping from a reporter minigene, by acting as a dominant-negative version of U2AF65, whereas the C-terminal fragment has no significant effect. The dominant-negative behavior of the U2AF65 N-terminal fragment can be reverted by U2AF35 overexpression. Interestingly, U2AF65 proteolysis in Jurkat cells on induction of early apoptosis correlates with the down-regulation of endogenous Fas exon 6 inclusion. Thus, these results support a functional link among apoptosis induction, U2AF65 cleavage, and the regulation of Fas alternative splicing.  相似文献   

3.
Alternative modes of binding by U2AF65 at the polypyrimidine tract   总被引:1,自引:0,他引:1  
During initial recognition of an intron in pre-mRNA, the 3' end of the intron is bound by essential splicing factors. Notably, the consensus RNA sequences bound by these proteins are highly degenerate in humans. This raises the question of 3' splicing factor function in introns lacking canonical binding sites. Investigating the introns of the model organism Neurospora crassa revealed a different organization at the 3' end of the intron compared to most eukaryotic organisms. The predicted branch point sequences of Neurospora introns are much closer to the 3' splice site compared to those in human introns. In addition, Neurospora introns lack the canonical polypyrimidine tract found at the end of introns in most eukaryotic organisms. The large subunit of the U2 snRNP associated factor (U2AF65), which is essential for splicing of human introns and specifically recognizes the polypyrimidine tract, is also present in Neurospora. We show that Neurospora U2AF65 binds RNA with low affinity and specificity, apparently evolving with its disappearing binding site. The arginine/serine rich domain at the N-terminus of Neurospora U2AF65 regulates its RNA binding. We find that this regulated binding can be recapitulated in human U2AF65 which has been mutated to decrease both affinity and overall charge. Finally, we show that the addition of the small U2AF subunit (U2AF35) to U2AF65 with weakened RNA binding affinity significantly enhances the affinity of the resulting U2AF heterodimer.  相似文献   

4.
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.  相似文献   

5.
6.
The splicing factor U2AF is required for the recruitment of U2 small nuclear RNP to pre-mRNAs in higher eukaryotes. The 65-kDa subunit of U2AF (U2AF(65)) binds to the polypyrimidine (Py) tract preceding the 3' splice site, while the 35-kDa subunit (U2AF(35)) contacts the conserved AG dinucleotide at the 3' end of the intron. It has been shown that the interaction between U2AF(35) and the 3' splice site AG can stabilize U2AF(65) binding to weak Py tracts characteristic of so-called AG-dependent pre-mRNAs. U2AF(35) has also been implicated in arginine-serine (RS) domain-mediated bridging interactions with splicing factors of the SR protein family bound to exonic splicing enhancers (ESE), and these interactions can also stabilize U2AF(65) binding. Complementation of the splicing activity of nuclear extracts depleted of U2AF by chromatography in oligo(dT)-cellulose requires, for some pre-mRNAs, only the presence of U2AF(65). In contrast, splicing of a mouse immunoglobulin M (IgM) M1-M2 pre-mRNA requires both U2AF subunits. In this report we have investigated the sequence elements (e.g., Py tract strength, 3' splice site AG, ESE) responsible for the U2AF(35) dependence of IgM. The results indicate that (i) the IgM substrate is an AG-dependent pre-mRNA, (ii) U2AF(35) dependence correlates with AG dependence, and (iii) the identity of the first nucleotide of exon 2 is important for U2AF(35) function. In contrast, RS domain-mediated interactions with SR proteins bound to the ESE appear to be dispensable, because the purine-rich ESE present in exon M2 is not essential for U2AF(35) activity and because a truncation mutant of U2AF(35) consisting only of the pseudo-RNA recognition motif domain and lacking the RS domain is active in our complementation assays. While some of the effects of U2AF(35) can be explained in terms of enhanced U2AF(65) binding, other activities of U2AF(35) do not correlate with increased cross-linking of U2AF(65) to the Py tract. Collectively, the results argue that interaction of U2AF(35) with a consensus 3' splice site triggers events in spliceosome assembly in addition to stabilizing U2AF(65) binding, thus revealing a dual function for U2AF(35) in pre-mRNA splicing.  相似文献   

7.
Kielkopf CL  Rodionova NA  Green MR  Burley SK 《Cell》2001,106(5):595-605
U2 auxiliary factor (U2AF) is an essential splicing factor that recognizes the 3' splice site and recruits the U2 snRNP to the branch point. The X-ray structure of the human core U2AF heterodimer, consisting of the U2AF35 central domain and a proline-rich region of U2AF65, has been determined at 2.2 A resolution. The structure reveals a novel protein-protein recognition strategy, in which an atypical RNA recognition motif (RRM) of U2AF35 and the U2AF65 polyproline segment interact via reciprocal "tongue-in-groove" tryptophan residues. Complementary biochemical experiments demonstrate that the core U2AF heterodimer binds RNA, and that the interacting tryptophan side chains are essential for U2AF dimerization. Atypical RRMs in other splicing factors may serve as protein-protein interaction motifs elsewhere during spliceosome assembly.  相似文献   

8.
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. U2AF(35) has multiple functions in pre-mRNA splicing. First, U2AF(35) has been shown to function by directly interacting with the AG at the 3' splice site. Second, U2AF(35) is thought to play a role in the recruitment of U2AF(65) by serine-arginine-rich (SR) proteins in enhancer-dependent splicing. It has been proposed that the physical interaction between the arginine-serine-rich (RS) domain of U2AF(35) and SR proteins is important for this activity. However, other data suggest that this may not be the case. Here, we report the identification of a mammalian gene that encodes a 26-kDa protein bearing strong sequence similarity to U2AF(35), designated U2AF(26). The N-terminal 187 amino acids of U2AF(35) and U2AF(26) are nearly identical. However, the C-terminal domain of U2AF(26) lacks many characteristics of the U2AF(35) RS domain and, therefore, might be incapable of interacting with SR proteins. We show that U2AF(26) can associate with U2AF(65) and can functionally substitute for U2AF(35) in both constitutive and enhancer-dependent splicing, demonstrating that the RS domain of the small U2AF subunit is not required for splicing enhancer function. Finally, we show that U2AF(26) functions by enhancing the binding of U2AF(65) to weak 3' splice sites. These studies identify U2AF(26) as a mammalian splicing factor and demonstrate that distinct U2AF complexes can participate in pre-mRNA splicing. Based on its sequence and functional similarity to U2AF(35), U2AF(26) may play a role in regulating alternative splicing.  相似文献   

9.
10.
11.
The prothrombin (F2) 3' end formation signal is highly susceptible to thrombophilia-associated gain-of-function mutations. In its unusual architecture, the F2 3' UTR contains an upstream sequence element (USE) that compensates for weak activities of the non-canonical cleavage site and the downstream U-rich element. Here, we address the mechanism of USE function. We show that the F2 USE contains a highly conserved nonameric core sequence, which promotes 3' end formation in a position- and sequence-dependent manner. We identify proteins that specifically interact with the USE, and demonstrate their function as trans-acting factors that promote 3' end formation. Interestingly, these include the splicing factors U2AF35, U2AF65 and hnRNPI. We show that these splicing factors not only modulate 3' end formation via the USEs contained in the F2 and the complement C2 mRNAs, but also in the biocomputationally identified BCL2L2, IVNS and ACTR mRNAs, suggesting a broader functional role. These data uncover a novel mechanism that functionally links the splicing and 3' end formation machineries of multiple cellular mRNAs in an USE-dependent manner.  相似文献   

12.
The U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is a heterodimeric splicing factor composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. The large subunit of U2AF recognizes the intronic polypyrimidine tract, a sequence located adjacent to the 3' splice site that serves as an important signal for both constitutive and regulated pre-mRNA splicing. The small subunit U2AF(35) interacts with the 3' splice site dinucleotide AG and is essential for regulated splicing. Like several other proteins involved in constitutive and regulated splicing, both U2AF(65) and U2AF(35) contain an arginine/serine-rich (RS) domain. In the present study we determined the role of RS domains in the subcellular localization of U2AF. Both U2AF(65) and U2AF(35) are shown to shuttle continuously between the nucleus and the cytoplasm by a mechanism that involves carrier receptors and is independent from binding to mRNA. The RS domain on either U2AF(65) or U2AF(35) acts as a nuclear localization signal and is sufficient to target a heterologous protein to the nuclear speckles. Furthermore, the results suggest that the presence of an RS domain in either U2AF subunit is sufficient to trigger the nucleocytoplasmic import of the heterodimeric complex. Shuttling of U2AF between nucleus and cytoplasm possibly represents a means to control the availability of this factor to initiate spliceosome assembly and therefore contribute to regulate splicing.  相似文献   

13.
The large subunit of the U2 auxiliary factor (U2AF) recognizes the polypyrimidine tract (Py-tract) located adjacent to the 3' splice site to facilitate U2 snRNP recruitment. While U2AF is considered essential for pre-mRNA splicing, its requirement for splicing on a genome-wide level has not been analyzed. Using Solexa sequencing, we performed mRNA profiling for splicing in the Schizosaccharomyces pombe U2AF(59) (prp2.1) temperature-sensitive mutant. Surprisingly, our analysis revealed that introns show a range of splicing defects in the mutant strain. While U2AF(59) inactivation (nonpermissive) conditions inhibit splicing of some introns, others are spliced apparently normally. Bioinformatics analysis indicated that U2AF(59)-insensitive introns have stronger 5' splice sites and higher A/U content. Most importantly, features that contribute to U2AF(59) insensitivity of an intron unexpectedly reside in its 5'-most 30 nucleotides. These include the 5' splice site, a guanosine at position 7, and the 5' splice site-to-branch point sequence context. A differential requirement (similar to U2AF(59)) for introns may also apply to other general splicing factors (e.g., prp10). Our combined results indicate that U2AF insensitivity is a common phenomenon and that varied intron features support the existence of unrecognized aspects of spliceosome assembly.  相似文献   

14.
15.
The general splicing factor U2AF(65) recognizes the polypyrimidine tract (Py tract) that precedes 3' splice sites and has three RNA recognition motifs (RRMs). The C-terminal RRM (RRM3), which is highly conserved, has been proposed to contribute to Py-tract binding and establish protein-protein contacts with splicing factors mBBP/SF1 and SAP155. Unexpectedly, we find that the human RRM3 domain is dispensable for U2AF(65) activity in vitro. However, it has an essential function in Schizosaccharomyces pombe distinct from binding to the Py tract or to mBBP/SF1 and SAP155. First, deletion of RRM3 from the human protein has no effect on Py-tract binding. Second, RRM123 and RRM12 select similar sequences from a random pool of RNA. Third, deletion of RRM3 has no effect on the splicing activity of U2AF(65) in vitro. However, deletion of the RRM3 domain of S. pombe U2AF(59) abolishes U2AF function in vivo. In addition, certain amino acid substitutions on the four-stranded beta-sheet surface of RRM3 compromise U2AF function in vivo without affecting binding to mBBP/SF1 or SAP155 in vitro. We propose that RRM3 has an unrecognized function that is possibly relevant for the splicing of only a subset of cellular introns. We discuss the implications of these observations on previous models of U2AF function.  相似文献   

16.
U2 snRNP auxiliary factor (U2AF) promotes U2 snRNP binding to pre-mRNAs and consists of two subunits of 65 and 35 kDa, U2AF(65) and U2AF(35). U2AF(65) binds to the polypyrimidine (Py) tract upstream from the 3' splice site and plays a key role in assisting U2 snRNP recruitment. It has been proposed that U2AF(35) facilitates U2AF(65) binding through a network of protein-protein interactions with other splicing factors, but the requirement and function of U2AF(35) remain controversial. Here we show that recombinant U2AF(65) is sufficient to activate the splicing of two constitutively spliced pre-mRNAs in extracts that were chromatographically depleted of U2AF. In contrast, U2AF(65), U2AF(35), and the interaction between them are required for splicing of an immunoglobulin micro; pre-RNA containing an intron with a weak Py tract and a purine-rich exonic splicing enhancer. Remarkably, splicing activation by U2AF(35) occurs without changes in U2AF(65) cross-linking to the Py tract. These results reveal substrate-specific requirements for U2AF(35) and a novel function for this factor in pre-mRNA splicing.  相似文献   

17.
A functional analysis of exon replacement mutations was performed in parallel with RNA-protein binding assays to gain insight into the role of the exon in alternative and simple splicing events. These results show that constitutive exons from unrelated genes contain strong signals that promote splicing in multiple sequence contexts by enhancing 3' splice site activity. A clue to the nature of the relationship between the exon and adjacent 3' splice site is indicated by the binding properties of exon variant RNAs when tested with different biochemical preparations of the essential splicing protein, U2AF. In the context of a complete nuclear extract, U2AF binding to the 3' splice site is stimulated by the presence of an adjacent constitutive exon. In contrast, highly purified HeLa U2AF binds equivalently to the exon variants under conditions in which differential polypyrimidine tract binding is evident. These results provide support for an assisted binding model in which positive-acting signals within exons, exon enhancers, direct the binding of accessory factors, which in turn increase the intrinsic affinity of U2AF for the adjacent 3' splice site. Further support for an assisted binding model is indicated by biochemical complementation of U2AF binding and by the localization of a novel exon enhancer, which, when introduced into a weak exon, stimulates splicing activity in parallel with U2AF binding. Immunoprecipitation analysis identifies the splicing factor, SC35, as a constituent of the exon enhancer binding complex. These results are discussed in the context of current models for functional exon-bridging interactions.  相似文献   

18.
Splicing and 3′-end processing (including cleavage and polyadenylation) of vertebrate pre-mRNAs are tightly coupled events that contribute to the extensive molecular network that coordinates gene expression. Sequences within the terminal intron of genes are essential to stimulate pre-mRNA 3′-end processing, although the factors mediating this effect are unknown. Here, we show that the pyrimidine tract of the last splice acceptor site of the human β-globin gene is necessary to stimulate mRNA 3′-end formation in vivo and binds the U2AF 65 splicing factor. Naturally occurring β-thalassaemia-causing mutations within the pyrimidine tract reduces both U2AF 65 binding and 3′-end cleavage efficiency. Significantly, a fusion protein containing U2AF 65, when tethered upstream of a cleavage/polyadenylation site, increases 3′-end cleavage efficiency in vitro and in vivo. Therefore, we propose that U2AF 65 promotes 3′-end processing, which contributes to 3′-terminal exon definition.  相似文献   

19.
20.
Recognition of the 3' splice site in mammalian introns is accomplished by association of the splicing factor U2AF with the precursor mRNA (pre-mRNA) in a multiprotein splicing commitment complex. It is well established that this interaction involves binding of the large U2AF65 subunit to sequences upstream of the 3' splice site, but the orientation of the four domains of this protein with respect to the RNA and hence their role in structuring the commitment complex remain unclear and the basis of contradictory models. We have examined the interaction of U2AF65 with an RNA representing the 3' splice site using a series of U2AF deletion mutants modified at the N terminus with the directed hydroxyl radical probe iron-EDTA. These studies, combined with an analysis of extant high resolution x-ray structures of protein.RNA complexes, suggest a model whereby U2AF65 bends the pre-mRNA to juxtapose reactive functionalities of the pre-mRNA substrate and organize these structures for subsequent spliceosome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号