首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Splicing and 3′-end processing (including cleavage and polyadenylation) of vertebrate pre-mRNAs are tightly coupled events that contribute to the extensive molecular network that coordinates gene expression. Sequences within the terminal intron of genes are essential to stimulate pre-mRNA 3′-end processing, although the factors mediating this effect are unknown. Here, we show that the pyrimidine tract of the last splice acceptor site of the human β-globin gene is necessary to stimulate mRNA 3′-end formation in vivo and binds the U2AF 65 splicing factor. Naturally occurring β-thalassaemia-causing mutations within the pyrimidine tract reduces both U2AF 65 binding and 3′-end cleavage efficiency. Significantly, a fusion protein containing U2AF 65, when tethered upstream of a cleavage/polyadenylation site, increases 3′-end cleavage efficiency in vitro and in vivo. Therefore, we propose that U2AF 65 promotes 3′-end processing, which contributes to 3′-terminal exon definition.  相似文献   

2.
Recognition of the 3' splice site in mammalian introns is accomplished by association of the splicing factor U2AF with the precursor mRNA (pre-mRNA) in a multiprotein splicing commitment complex. It is well established that this interaction involves binding of the large U2AF65 subunit to sequences upstream of the 3' splice site, but the orientation of the four domains of this protein with respect to the RNA and hence their role in structuring the commitment complex remain unclear and the basis of contradictory models. We have examined the interaction of U2AF65 with an RNA representing the 3' splice site using a series of U2AF deletion mutants modified at the N terminus with the directed hydroxyl radical probe iron-EDTA. These studies, combined with an analysis of extant high resolution x-ray structures of protein.RNA complexes, suggest a model whereby U2AF65 bends the pre-mRNA to juxtapose reactive functionalities of the pre-mRNA substrate and organize these structures for subsequent spliceosome assembly.  相似文献   

3.
The role of U2AF35 and U2AF65 in enhancer-dependent splicing.   总被引:5,自引:1,他引:5       下载免费PDF全文
Splicing enhancers are RNA sequence elements that promote the splicing of nearby introns. The mechanism by which these elements act is still unclear. Some experiments support a model in which serine-arginine (SR)-rich proteins function as splicing activators by binding to enhancers and recruiting the splicing factor U2AF to an adjacent weak 3' splice site. In this model, recruitment requires interactions between the SR proteins and the 35-kDa subunit of U2AF (U2AF35). However, more recent experiments have not supported the U2AF recruitment model. Here we provide additional evidence for the recruitment model. First, we confirm that base substitutions that convert weak 3' splice sites to a consensus sequence, and therefore increase U2AF binding, relieve the requirement for a splicing activator. Second, we confirm that splicing activators are required for the formation of early spliceosomal complexes on substrates containing weak 3' splice sites. Most importantly, we find that splicing activators promote the binding of both U2AF65 and U2AF35 to weak 3' splice sites under splicing conditions. Finally, we show that U2AF35 is required for maximum levels of activator-dependent splicing. We conclude that a critical function of splicing activators is to recruit U2AF to the weak 3' splice sites of enhancer-dependent introns, and that efficient enhancer-dependent splicing requires U2AF35.  相似文献   

4.
5.
Eukaryotic pre-mRNAs are capped at their 5' ends, polyadenylated at their 3' ends, and spliced before being exported from the nucleus to the cytoplasm. Although the three processing reactions can be studied separately in vitro, they are coupled in vivo. We identified subunits of the U2 snRNP in highly purified CPSF and showed that the two complexes physically interact. We therefore tested whether this interaction contributes to the coupling of 3' end processing and splicing. We found that CPSF is necessary for efficient splicing activity in coupled assays and that mutations in the pre-mRNA binding site of the U2 snRNP resulted in impaired splicing and in much reduced cleavage efficiency. Moreover, we showed that efficient cleavage required the presence of the U2 snRNA in coupled assays. We therefore propose that the interaction between CPSF and the U2 snRNP contributes to the coupling of splicing and 3' end formation.  相似文献   

6.
U2 snRNP auxiliary factor (U2AF) promotes U2 snRNP binding to pre-mRNAs and consists of two subunits of 65 and 35 kDa, U2AF(65) and U2AF(35). U2AF(65) binds to the polypyrimidine (Py) tract upstream from the 3' splice site and plays a key role in assisting U2 snRNP recruitment. It has been proposed that U2AF(35) facilitates U2AF(65) binding through a network of protein-protein interactions with other splicing factors, but the requirement and function of U2AF(35) remain controversial. Here we show that recombinant U2AF(65) is sufficient to activate the splicing of two constitutively spliced pre-mRNAs in extracts that were chromatographically depleted of U2AF. In contrast, U2AF(65), U2AF(35), and the interaction between them are required for splicing of an immunoglobulin micro; pre-RNA containing an intron with a weak Py tract and a purine-rich exonic splicing enhancer. Remarkably, splicing activation by U2AF(35) occurs without changes in U2AF(65) cross-linking to the Py tract. These results reveal substrate-specific requirements for U2AF(35) and a novel function for this factor in pre-mRNA splicing.  相似文献   

7.
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.  相似文献   

8.
The polypyrimidine-tract (Py-tract) adjacent to 3' splice sites is an essential splicing signal and is recognized by several proteins, including the general splicing factor U2AF65 and the highly specific splicing repressor Sex-lethal (SXL). They both contain ribonucleoprotein-consensus RNA-binding motifs. However, U2AF65 recognizes a wide variety of Py-tracts, whereas SXL recognizes specific Py-tracts such as the nonsex-specific Py-tract of the transformer pre-mRNA. It is not understood how these seemingly similar proteins differentially recognize the Py-tract. To define these interactions, we used chemical interference and protection assays, saturation mutagenesis, and RNAs containing modified nucleotides. We find that these proteins recognize distinct features of the RNA. First, although uracils within the Py-tract are protected from chemical modification by both of these proteins, modification of any one of seven uracils by hydrazine, or any of eight phosphates by ethylnitrosourea strongly interfered with the binding of SXL only. Second, the 2' hydroxyl groups or backbone conformation appeared important for the binding of SXL, but not U2AF65. Third, although any of the bases (cytosine > adenine > guanine) could substitute for uracils for U2AF65 binding, only guanine partially substituted for certain uracils for SXL binding. The different dependence on individual contacts and nucleotide preference may provide a basis for the different RNA-binding specificities and thus functions of U2AF65 and SXL in 3' splice site choice.  相似文献   

9.
The essential splicing factors SF1 and U2AF play an important role in the recognition of the pre-mRNA 3' splice site during early spliceosome assembly. The structure of the C-terminal RRM (RRM3) of human U2AF(65) complexed to an N-terminal peptide of SF1 reveals an extended negatively charged helix A and an additional helix C. Helix C shields the potential RNA binding surface. SF1 binds to the opposite, helical face of RRM3. It inserts a conserved tryptophan into a hydrophobic pocket between helices A and B in a way that strikingly resembles part of the molecular interface in the U2AF heterodimer. This molecular recognition establishes a paradigm for protein binding by a subfamily of noncanonical RRMs.  相似文献   

10.
The U2 auxiliary factor large subunit (U2AF65) is an essential pre-mRNA splicing factor for the initial stages of spliceosome assembly. Tandem RNA recognition motifs (RRM)s of U2AF65 recognize polypyrimidine tract signals adjacent to 3' splice sites. Despite the central importance of U2AF65 for splice site recognition, the relative arrangement of the U2AF65 RRMs and the energetic forces driving polypyrimidine tract recognition remain unknown. Here, the solution conformation of the U2AF65 RNA binding domain determined using small angle x-ray scattering reveals a bilobal shape without apparent interdomain contacts. The proximity of the N and C termini within the inter-RRM configuration is sufficient to explain the action of U2AF65 on spliceosome components located both 5' and 3' to its binding site. Isothermal titration calorimetry further demonstrates that an unusually large enthalpy-entropy compensation underlies U2AF65 recognition of an optimal polyuridine tract. Qualitative similarities were observed between the pairwise distance distribution functions of the U2AF65 RNA binding domain and those either previously observed for N-terminal RRMs of Py tract-binding protein that lack interdomain contacts or calculated from the high resolution coordinates of a U2AF65 deletion variant bound to RNA. To further test this model, the shapes and RNA interactions of the wild-type U2AF65 RNA binding domain were compared with those of U2AF65 variants containing either Py tract-binding protein linker sequences or a deletion within the inter-RRM linker. Results of these studies suggest inter-RRM conformational plasticity as a possible means for U2AF65 to universally identify diverse pre-mRNA splice sites.  相似文献   

11.
12.
The splicing factor U2AF is required for the recruitment of U2 small nuclear RNP to pre-mRNAs in higher eukaryotes. The 65-kDa subunit of U2AF (U2AF(65)) binds to the polypyrimidine (Py) tract preceding the 3' splice site, while the 35-kDa subunit (U2AF(35)) contacts the conserved AG dinucleotide at the 3' end of the intron. It has been shown that the interaction between U2AF(35) and the 3' splice site AG can stabilize U2AF(65) binding to weak Py tracts characteristic of so-called AG-dependent pre-mRNAs. U2AF(35) has also been implicated in arginine-serine (RS) domain-mediated bridging interactions with splicing factors of the SR protein family bound to exonic splicing enhancers (ESE), and these interactions can also stabilize U2AF(65) binding. Complementation of the splicing activity of nuclear extracts depleted of U2AF by chromatography in oligo(dT)-cellulose requires, for some pre-mRNAs, only the presence of U2AF(65). In contrast, splicing of a mouse immunoglobulin M (IgM) M1-M2 pre-mRNA requires both U2AF subunits. In this report we have investigated the sequence elements (e.g., Py tract strength, 3' splice site AG, ESE) responsible for the U2AF(35) dependence of IgM. The results indicate that (i) the IgM substrate is an AG-dependent pre-mRNA, (ii) U2AF(35) dependence correlates with AG dependence, and (iii) the identity of the first nucleotide of exon 2 is important for U2AF(35) function. In contrast, RS domain-mediated interactions with SR proteins bound to the ESE appear to be dispensable, because the purine-rich ESE present in exon M2 is not essential for U2AF(35) activity and because a truncation mutant of U2AF(35) consisting only of the pseudo-RNA recognition motif domain and lacking the RS domain is active in our complementation assays. While some of the effects of U2AF(35) can be explained in terms of enhanced U2AF(65) binding, other activities of U2AF(35) do not correlate with increased cross-linking of U2AF(65) to the Py tract. Collectively, the results argue that interaction of U2AF(35) with a consensus 3' splice site triggers events in spliceosome assembly in addition to stabilizing U2AF(65) binding, thus revealing a dual function for U2AF(35) in pre-mRNA splicing.  相似文献   

13.
The essential pre-mRNA splicing factor, U2AF(65), guides the early stages of splice site choice by recognizing a polypyrimidine (Py) tract consensus sequence near the 3' splice site. Since Py tracts are relatively poorly conserved in higher eukaryotes, U2AF(65) is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF(65) RNA binding domain bound to a Py tract composed of seven uridines has been determined at 2.5 A resolution. Specific hydrogen bonds between U2AF(65) and the uracil bases provide an explanation for polyuridine recognition. Flexible side chains and bound water molecules form the majority of the base contacts and potentially could rearrange when the U2AF(65) structure adapts to different Py tract sequences. The energetic importance of conserved residues for Py tract binding is established by analysis of site-directed mutant U2AF(65) proteins using surface plasmon resonance.  相似文献   

14.
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF65) cooperatively recognize the 3′ splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF65 splicing factors, as well as the SF1/U2AF65 complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF65/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF65 complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF65 splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF65/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing.  相似文献   

15.
16.
17.
Due to their inherent stability, thermophilic bacteria and archaea serve as important resources for biochemical and biophysical analyses of many biological processes. Unfortunately, scientists characterizing eukaryote-specific processes, such as nuclear pre-mRNA splicing, are unable to take advantage of these sources of thermostable proteins. To identify and provide a source of thermostable eukaryotic proteins, we are characterizing splicing factors in the thermotolerant deep-sea vent polychaete, Alvinella pompejana. This worm, also known as the Pompeii worm, is found in the extreme environment of deep-sea hydrothermal vents, and is one of the most thermotolerant eukaryotic organisms known. We report on detailed analyses of U2AF65, the large subunit of the U2 small nuclear ribonucleoprotein auxiliary factor, an essential splicing factor important for intron definition and alternative splicing. The cloning and characterization of Pompeii U2AF65 show it is highly similar to human U2AF65 in sequence and function and is more thermostable than the human protein when bound to RNA in vitro. Notably, Pompeii U2AF65 can restore splicing in a human extract depleted of human U2AF. We also determine that the general splicing mechanisms and signal sequences are conserved in the Pompeii worm, an annelid which has previously been uncharacterized in terms of splicing factors and signals.  相似文献   

18.
The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5′ splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3′ splice site. The 5′ and 3′ splice site complexes are thought to be joined together by protein–protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF65. Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5′ and 3′ splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival.  相似文献   

19.
20.
The essential pre-mRNA splicing factor, U2 auxiliary factor 65KD (U2AF(65)) recognizes the polypyrimidine tract (Py-tract) consensus sequence of the pre-mRNA using two RNA recognition motifs (RRMs), the most prevalent class of eukaryotic RNA-binding domain. The Py-tracts of higher eukaryotic pre-mRNAs are often interrupted with purines, yet U2AF(65) must identify these degenerate Py-tracts for accurate pre-mRNA splicing. Previously, the structure of a U2AF(65) variant in complex with poly(U) RNA suggested that rearrangement of flexible side-chains or bound water molecules may contribute to degenerate Py-tract recognition by U2AF(65). Here, the X-ray structure of the N-terminal RRM domain of U2AF(65) (RRM1) is described at 1.47 A resolution in the absence of RNA. Notably, RNA-binding by U2AF(65) selectively stabilizes pre-existing alternative conformations of three side-chains located at the RNA interface (Arg150, Lys225, and Arg227). Additionally, a flexible loop connecting the beta2/beta3 strands undergoes a conformational change to interact with the RNA. These pre-existing alternative conformations may contribute to the ability of U2AF(65) to recognize a variety of Py-tract sequences. This rare, high-resolution view of an important member of the RRM class of RNA-binding domains highlights the role of alternative side-chain conformations in RNA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号