首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The discovery that the flavoprotein oxidase, Erv2p, provides oxidizing potential for disulfide bond formation in yeast, has led to investigations into the roles of the mammalian homologues of this protein. Mammalian homologues of Erv2p include QSOX (sulfhydryl oxidases) from human lung fibroblasts, guinea-pig endometrial cells and rat seminal vesicles. In the present study we show that, when expressed in mammalian cells, the longer version of human QSOX1 protein (hQSOX1a) is a transmembrane protein localized primarily to the Golgi apparatus. We also present the first evidence showing that hQSOX1a can act in vivo as an oxidase. Overexpression of hQSOX1a suppresses the lethality of a complete deletion of ERO1 (endoplasmic reticulum oxidase 1) in yeast and restores disulfide bond formation, as assayed by the folding of the secretory protein carboxypeptidase Y.  相似文献   

3.
The flavin-dependent sulfhydryl oxidase from chicken egg white catalyzes the oxidation of sulfhydryl groups to disulfides with the reduction of oxygen to hydrogen peroxide. Reduced proteins are the preferred thiol substrates of this secreted enzyme. The egg white oxidase shows an average 64% identity (from randomly distributed peptides comprising more than 30% of the protein sequence) to a human protein, Quiescin Q6, involved in growth regulation. Q6 is strongly expressed when fibroblasts enter reversible quiescence (Coppock, D. L., Cina-Poppe, D., Gilleran, S. (1998) Genomics 54, 460-468). A peptide antibody against Q6 cross-reacts with both the egg white enzyme and a flavin-linked sulfhydryl oxidase isolated from bovine semen. Sequence analyses show that the egg white oxidase joins human Q6, bone-derived growth factor, GEC-3 from guinea pig, and homologs found in a range of multicellular organisms as a member of a new protein family. These proteins are formed from the fusion of thioredoxin and ERV motifs. In contrast, the flavin-linked sulfhydryl oxidase from Aspergillus niger is related to the pyridine nucleotide-dependent disulfide oxidoreductases, and shows no detectable sequence similarity to this newly recognized protein family.  相似文献   

4.
5.
The participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs.  相似文献   

6.
Abstract

The participation of thiol-oxidoreductases such as thioredoxin during implantation, embryogenesis and fetal development has been extensively studied. Here, we analyzed the expression of the thioredoxin superfamily enzyme quiescin Q6/sulfhydryl oxidase (QSOX) during development. Results show that QSOX is present in fetal bovine serum (4 months' gestation), but its levels decrease with time after birth (from P1 to P60). We also demonstrate that a sulfhydryl oxidase activity correlates with QSOX expression in such sera, suggesting a putative role in the redox modulation of developmental programs.  相似文献   

7.
Immunofluorescent studies showed that antibodies prepared against bovine milk sulfhydryl oxidase reacted with acinar cells of porcine and bovine pancreas. A close inspection of the specific location within bovine pancreatic cells revealed that the zymogen granules, themselves, bound the fluorescent antibody. Bovine pancreatic tissue was homogenized in 0.3 M sucrose, then separated into the zymogen granule fraction by differential centrifugation. The intact zymogen granules were immunofluorescent positive when incubated with antibodies to bovine milk sulfhydryl oxidase, and glutathione-oxidizing activity was detected under standard assay conditions. Pancreatic sulfhydryl oxidase was purified from the zymogen fraction by precipitation with 50% saturated ammonium sulfate, followed by Sepharose CL-6B column chromatography. Active fractions were pooled and subjected to covalent affinity chromatography on cysteinylsuccinamidopropyl-glass using 2 mM glutathione as eluant at 37 degrees C. The specific activity of bovine pancreatic sulfhydryl oxidase thus isolated was 10-20 units/mg protein using 0.8 mM glutathione as substrate. Ouchterlony double-diffusion studies showed that antibody directed against the purified bovine milk enzyme reacted identically with pancreatic sulfhydryl oxidase. The antibody also immunoprecipitated glutathione-oxidizing activity from crude pancreatic homogenates. Western blotting analysis indicated a 90,000 Mr antigen-reactive band in both bovine milk and pancreatic fractions while sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single silver-staining protein with an apparent Mr 300,000. Thus, we believe that sulfhydryl oxidase may exist in an aggregated molecular form. Bovine pancreatic sulfhydryl oxidase catalyzes the oxidation of low-molecular-weight thiols such as glutathione, N-acetyl-L-cysteine, and glycylglycyl-L-cysteine, as well as that of a high-molecular-weight protein substrate, reductively denatured pancreatic ribonuclease A.  相似文献   

8.
A radioimmunoassay for sulfhydryl oxidase, a membrane enzyme, was developed using antibodies raised to the bovine milk enzyme which had been purified by transient covalent affinity chromatography on a cysteinylsuccinamidopropyl-glass matrix. Bovine milk sulfhydryl oxidase and bovine kidney sulfhydryl oxidase (“glutathione oxidase”) appear to be immunologically identical as evidenced by parallel responses in radioimmunoassays. Antibodies raised to the purified milk sulfhydryl oxidase can immunoprecipitate glutathione oxidase activity, but not γ-glutamyltransferase (“transpeptidase”) activity, from bovine kidney preparations.  相似文献   

9.
为发展新型面粉改良酶制剂,利用大肠杆菌Escherichia coli原核表达了小麦静息巯基氧化酶(Wheat quiescin sulfhydryl oxidase,wQSOX)。将合成的wqsox基因构建至pMAL-c5x载体,并在大肠杆菌中进行表达,优化蛋白表达条件后对重组蛋白进行分离纯化及融合标签切除,获得的重组wQSOX蛋白用于酶学性质探究以及面包品质改良。结果表明,合成的截短wqsox基因包含1359 bp,编码453个氨基酸,理论蛋白分子量51 kDa;构建的pMAL-c5x-wqsox重组质粒在E.coli Rosetta gamiB(DE3)中可溶表达了重组蛋白MBP-wQSOX,其最佳表达条件为:诱导温度25℃,诱导剂IPTG浓度0.3 mmol/L,诱导时间6 h;利用Xa因子蛋白酶切除了MBP融合标签,亲和层析纯化得到了wQSOX;wQSOX可催化DTT、GSH和Cys氧化,并伴随着H2O2的生成,其中对DTT表现出最高的底物特异性;酶学性质研究发现,wQSOX最适反应温度和pH分别为50℃和10.0,在高温和碱性环境条件下表现出较好的稳定性;每克面粉中添加1.1 U wQSOX能够显著(P<0.05)提高26.4%的面包比容,降低20.5%的面包芯硬度和24.8%的咀嚼性,表现出了较好的改良面包加工品质能力。研究结果对丰富新型面粉改良酶制剂种类以及推动wQSOX在焙烤行业的应用奠定了理论基础。  相似文献   

10.
The yeast and human mitochondrial sulfhydryl oxidases of the Erv1/Alr family have been shown to be essential for the biogenesis of mitochondria and the cytosolic iron sulfur cluster assembly. In this study we identified a likely candidate for the first mitochondrial flavin-linked sulfhydryl oxidase of the Erv1-type from a photosynthetic organism. The central core of the plant enzyme (AtErv1) exhibits all of the characteristic features of the Erv1/Alr protein family, including a redox-active YPCXXC motif, noncovalently bound FAD, and sulfhydryl oxidase activity. Transient expression of fusion proteins of AtErv1 and the green fluorescence protein in plant protoplasts showed that the plant enzyme preferentially localizes to the mitochondria. Yet AtErv1 has several unique features, such as the presence of a CXXXXC motif in its carboxyl-terminal domain and the absence of an amino-terminally localized cysteine pair common to yeast and human Erv1/Alr proteins. In addition, the dimerization of AtErv1 is not mediated by its amino terminus but by its unique CXXXXC motif. In vitro assays with purified protein and artificial substrates demonstrate a preference of AtErv1 for dithiols with a defined space between the thiol groups, suggesting a thioredoxin-like substrate.  相似文献   

11.
A cDNA encoding rat p47phox was cloned from rat spleen cDNA library, utilizing rapid amplification of cDNA ends. The open reading frame corresponded to 389 amino acids: It contained the phagocyte oxidase homology domain, two Src homology 3 domains and a proline rich region, all of which are conserved in mammalian p47phox sequences. Rat p47phox displayed the highest degree of identity to mouse p47phox (94%). We expressed and purified rat p47phox as a glutathione S-transferase fusion protein, and found that the rat protein could replace human p47phox in a cell-free activation system for human NADPH oxidase, giving about half activity. Although rat 12-lipoxygenase interacted with human p47phox in a yeast two-hybrid system, this was not the case for rat p47phox.  相似文献   

12.
The transition from growth to quiescence is deeply deranged in cancer cells. Expression of the quiescence-induced genes, quiescin Q6, decorin, and S29, was examined in important physiological states and in several cell types. Senescent fibroblasts expressed neither Q6 nor decorin mRNAs. The quiescins were induced in serum-deprived cultures. Trypsinized cells, which rapidly reattached to the culture dish, expressed Q6, S29, and decorin mRNAs at reduced levels, compared to those that remained in suspension. Expression of Q6 and S29 mRNAs in endothelial cells was low in growth phase and high in quiescent cells. Q6 and S29 mRNAs were found in a large variety of human tissues. The quiescin Q6 protein was detected in WI38 cell extracts and in conditioned medium from quiescent cells. A complex regulation of the quiescins by growth and attachment status in specific cell types may be of importance in pathological growth regulation and the development of cancer.  相似文献   

13.
Jaje J  Wolcott HN  Fadugba O  Cripps D  Yang AJ  Mather IH  Thorpe C 《Biochemistry》2007,46(45):13031-13040
Both metal and flavin-dependent sulfhydryl oxidases catalyze the net generation of disulfide bonds with the reduction of oxygen to hydrogen peroxide. The first mammalian sulfhydryl oxidase to be described was an iron-dependent enzyme isolated from bovine milk whey (Janolino, V.G., and Swaisgood, H.E. (1975) J. Biol. Chem. 250, 2532-2537). This protein was reported to contain 0.5 atoms of iron per 89 kDa subunit and to be completely inhibited by ethylenediaminetetraacetate (EDTA). However the present work shows that a soluble 62 kDa FAD-linked and EDTA-insensitive sulfhydryl oxidase apparently constitutes the dominant disulfide bond-generating activity in skim milk. Unlike the metalloenzyme, the flavoprotein is not associated tightly with skim milk membranes. Sequencing of the purified bovine enzyme (>70% coverage) showed it to be a member of the Quiescin-sulfhydryl oxidase (QSOX) family. Consistent with its solubility, this bovine QSOX1 paralogue lacks the C-terminal transmembrane span of the long form of these proteins. Bovine milk QSOX1 is highly active toward reduced RNase and with the model substrate dithiothreitol. The significance of these new findings is discussed in relation to the earlier reports of metal-dependent sulfhydryl oxidases.  相似文献   

14.
Covalent chromatographically isolated bovine kidney sulfhydryl oxidase was found to catalyze the oxidation of cysteine and cysteine-containing substrates as determined by assaying with 5,5'-dithiobis(2-nitrobenzoate). Monitoring the time-course of substrate disappearance and product formation by means of high-pressure liquid chromatography revealed that such partially purified renal sulfhydryl oxidase preparations catalyze the direct oxidation of glycylglycyl-L-cysteine to its disulfide form with no other detectable metabolic products. Accordingly, Gly-Gly-Cys appears to be better suited for routine assays of sulfhydryl oxidase activity than is the traditionally employed substrate, glutathione, whose oxidation can be initiated by gamma-glutamyltransferase-catalyzed cleavage of the gamma-peptide bond, leading to falsely 'positive' assays in the absence of sulfhydryl oxidase per se.  相似文献   

15.
Flavin-dependent sulfhydryl oxidases represent a newly discovered family of proteins with a range of cellular locations and putative roles. The avian and mammalian proteins can catalyze the direct oxidation of protein cysteine residues to disulfides with the reduction of dioxygen to hydrogen peroxide. Although thiols interfere with the peroxidase-mediated quantitation of hydrogen peroxide, a very sensitive, continuous fluorescence assay of the sulfhydryl oxidases can be devised with careful selection of thiol substrate concentration and fluorogen. Purified avian enzyme (or crude chicken egg white) was used for these experiments. Homovanillic acid was found to be a suitable fluorogen in the presence of 300 microM thiols from either dithiothreitol or reduced ribonuclease A. High concentrations of horseradish peroxidase minimized the effects of contaminating catalase in biological samples. Using fluorescence microcells, the assay could detect 15fmol of avian sulfhydryl oxidase and the rates were linearly dependent on enzyme concentration up to 6nM. Aspects of the interaction among thiols, homovanillic acid, and peroxidase are discussed which limit the sensitivity of the assay and require that care is exercised in the application of this new procedure. Finally, the assay is used to show that there is sulfhydryl oxidase activity in a number of secretory fluids including human tears.  相似文献   

16.
Sulfhydryl oxidase (glutathione-oxidizing activity) is closely associated with γ-glutamyltransferase (γ-glutamyl transpeptidase) in skim milk membranes. Similar close association of the two enzymatic activities in kidney membranes has led to the recent proposal that glutathione-oxidizing activity can be attributed to the action of γ-glutamyltransferase, itself, in generating cysteinylglycine which, in turn, catalyzes sulfhydryl group oxidation (O. W. Griffith and S. S. Tate, 1980, J. Biol. Chem.255, 5011–5014). However, a previously published procedure for the isolation of highly purified sulfhydryl oxidase from skim milk membranes (V. G. Janolino and H. E. Swaisgood, 1975, J. Biol. Chem.250, 2532–2538) leads to the effective separation of the two activities. Quantitative chromatographic analyses of GSH, GSSG, and Glu levels revealed that the highly purified sulfhydryl oxidase preparation catalyzes the direct oxidation of GSH to GSSG without detectable cleavage of the γ-glutamyl peptide bond. These results were confirmed by monitoring the time course of substrate disappearance and product formation using high-performance liquid chromatography. Conversely, a supernatant fraction enriched in γ-glutamyltransferase activity displayed no sulfhydryl group-oxidizing activity. 6-Diazo-5-oxo-l-norleucine selectively inhibited the transferase in crude preparations containing both sulfhydryl oxidase and γ-glutamyltransferase. It is concluded that sulfhydryl oxidase and γ-glutamyltransferase activities are distinct and separable.  相似文献   

17.
Sulfhydryl oxidase from bovine kidney cortex was purified 2500-fold by covalent chromatography using cysteinylsuccinamidopropyl-glass. GSH oxidation catalyzed by the resulting preparation was found to be totally enzymatic, as judged by the inability of the preparation to reduce nitro blue tetrazolium, and H2O2 was found to be a product, as had been previously observed with milk sulfhydryl oxidase. No GSH peroxidase activity could be detected, using either H2O2 or t-butylhydroperoxide. The chromatographically purified renal sulfhydryl oxidase was resolved from γ-glutamyltransferase as evidenced by a 12,000-fold increase in ratio of the two enzymatic activities over that exhibited by crude kidney homogenates, and antibodies raised against purified milk sulfhydryl oxidase cross-reacted with the kidney oxidase, but not the kidney transferase.  相似文献   

18.
Codding JA  Israel BA  Thorpe C 《Biochemistry》2012,51(20):4226-4235
This work explores the substrate specificity of the quiescin sulfhydryl oxidase (QSOX) family of disulfide-generating flavoenzymes to provide enzymological context for investigation of the physiological roles of these facile catalysts of oxidative protein folding. QSOX enzymes are generally unable to form disulfide bonds within well-structured proteins. Use of a temperature-sensitive mutant of ubiquitin-conjugating enzyme 4 (Ubc4') as a model substrate shows that QSOX activity correlates with the unfolding of Ubc4' monitored by circular dichroism. Fusion of Ubc4' with the more stable glutathione-S-transferase domain demonstrates that QSOX can selectively introduce disulfides into the less stable domain of the fusion protein. In terms of intermolecular disulfide bond generation, QSOX is unable to cross-link well-folded globular proteins via their surface thiols. However, the construction of a septuple mutant of RNase A, retaining a single cysteine residue, demonstrates that flexible protein monomers can be directly coupled by the oxidase. Steady- and pre-steady-state kinetic experiments, combined with static fluorescence approaches, indicate that while QSOX is an efficient catalyst for disulfide bond formation between mobile elements of structure, it does not appear to have a significant binding site for unfolded proteins. These aspects of protein substrate discrimination by QSOX family members are rationalized in terms of the stringent steric requirements for disulfide exchange reactions.  相似文献   

19.
The inhibition by some thiol reagents of partly purified mitochondrial monoamine oxidase (MAO) (EC 1.4.3.4) from rat liver was studied, and the molar content of sulfhydryl groups in the enzyme determined. Sodium nitroprusside and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) inhibited the enzyme, apparently reversibly, while sodium arsenite was not inhibitory. Concentrations of the respective inhibitors causing 50% inhibition after 15 min of preincubation with the enzyme at pH 7.0 and 37 degrees C are 5.80 times 10(-4) M and 4.35 times 10(-5) M. The thiol compounds cysteine, dithiothreitol, and 2-mercaptoethanol did not inhibit MAO. The average number of sulfhydryl groups per mole of enzyme, determined by reaction with DTNB, increased from 3.6 +/- 0.2 freely reacting sulfhydryl groups (n = 4) to 18.4 to total sulfhydryl groups (n = 2) on denaturation with 8 M urea.  相似文献   

20.
Denver, Tokyo, and Salt Lake City investigators recently published different complimentary deoxyribonucleic acid (cDNA) sequences for human liver xanthine dehydrogenase/xanthine oxidase (XD/XO). The gene encoding the Denver cDNA was subsequently linked to juvenile familial amyotrophic lateral sclerosis (JFALS) at chromosome 2q33 and has been proposed as the ALS2 locus. The present investigation was undertaken to elucidate the differences between the three cDNA sequences, and we provide evidence that the Denver cDNA encodes aldehyde oxidase (AO): first, the Denver cDNA sequence diverged significantly from the Tokyo and Salt Lake City cDNA sequences which were very similar; second, the deduced protein sequence from the Denver cDNA was very similar to the amino acid sequence of purified rabbit liver AO protein; third, the deduced Denver protein sequence was 76% identical to the encoded 101 amino acid long peptides from partial cDNAs for rabbit and rat AO and 81.7% identical to 300 amino acids from an incomplete cDNA encoding bovine AO; fourth, the Denver gene was expressed in liver, kidney, lung, pancreas, prostate, testes, and ovary while the Tokyo XD gene was expressed predominantly in liver and small intestine; fifth, the Denver gene was previously mapped to chromosome 2q33 which is syntenic to the mouse AO locus on chromosome 1. Our results have revealed dramatic similarities in protein and DNA sequence in the human molybdenum hydroxylases, have uncovered unanticipated complexity in the human molybdenum hydroxylase genes, and advance the potential for AO derived oxygen radicals in JFALS and other human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号