首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The purpose of this study was to evaluate the effect of formulation components on the in vitro skin permeation of microemulsion drug delivery system containing fluconazole (FLZ). Lauryl alcohol (LA) was screened as the oil phase of microemulsions. The pseudo-ternary phase diagrams for microemulsion regions were constructed using LA as the oil, Labrasol (Lab) as the surfactant and ethanol (EtOH) as the cosurfactant. The formulation which showed a highest permeation rate of 47.15 ± 1.12 μg cm−2 h−1 and appropriate physicochemical properties was optimized as containing 2% FLZ, 10% LA, 20% Lab/EtOH (1:1), and 68% double-distilled water (w/w). The efficiency of microemulsion formulation in the topical delivery of FLZ was dependent upon the contents of water and LA as well as Lab/EtOH mixing ratio. It was concluded that the percutaneous absorption of FLZ from microemulsions was enhanced with increasing the LA and water contents, and with decreasing the Lab/EtOH ratio in the formulation. Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved, which showed the widest zone of inhibition as compared to FLZ reference. The studied microemulsion formulation showed a good stability for a period of 3 months. These results indicate that the studied microemulsion formulation might be a promising vehicle for topical delivery of FLZ.  相似文献   

2.
The present investigation aims at developing microemulsion-based formulations for topical delivery of acyclovir. Various microemulsions were developed using isopropyl myristate/Captex 355/Labrafac as an oil phase, Tween 20 as surfactant, Span 20 as cosurfactant, and water/dimethylsulfoxide (1:3) as an aqueous phase. Transcutol, eucalyptus oil, and peppermint oil were used as permeation enhancers. In vitro permeation studies through laca mice skin were performed using Franz diffusion cells. The optimum formulation containing 2.5% Transcutol as the penetration enhancer showed 1.7-fold enhancement in flux and permeation coefficient as compared to marketed cream and ointment formulation. In vivo antiviral studies were performed in female Balb/c mice against induced herpes simplex virus I infection. A single application of microemulsion formulation containing 2.5% Transcutol given 24 h post-injection resulted in complete suppression of development of herpetic skin lesions.  相似文献   

3.
Onychomycosis is associated with the cutaneous fungal infection of the nail and the nail folds (skin surrounding the nail). It is therefore important to target drug delivery into the nail folds along with nail plate and the nail bed. Systematic and strategic selection of the penetration enhancers specific for the skin and the nail is discussed. Twelve penetration enhancers were screened for their ability to improve solubility, in vitro nail penetration, in vitro skin permeation, and in vitro skin penetration of the antifungal drug ciclopirox olamine. In contrast to transdermal drug delivery, the main selection criteria for skin penetration enhancer in topical drug delivery were increased drug accumulation in the epidermis and minimal permeation across the skin. Thiourea improved the solubility and nail penetration of ciclopirox olamine. It also showed enhancement in the transungual diffusion of the drug. Propylene glycol showed a 12-fold increase in solubility and 3-fold increase in epidermal accumulation of ciclopirox olamine, while minimizing the transdermal movement of the drug. Thiourea was the selected nail permeation enhancer and propylene glycol was the selected skin penetration enhancer of ciclopirox olamine. A combination of the selected enhancers was also explored for its effect on drug delivery to the nail and nail folds. The enhancer combination reduced the penetration of ciclopirox in the skin and also the permeation through the nail. The proposed preformulation strategy helps to select appropriate enhancers for optimum topical delivery and paves way towards an efficient topical formulation for passive transungual drug delivery.  相似文献   

4.
Aims: Food-grade microemulsions have been of increasing interest to researchers as potential delivery systems for bioactive compounds. However, food-grade microemulsions are difficult to formulate and no microemulsion has been documented for antifungal purpose. The physicochemical characterization of a food-grade glycerol monolaurate (GML)/ethanol (EtOH)/Tween 80/potassium sorbate (PS)/water microemulsion system and the antifungal activities against Aspergillus niger and Penicillium italicum have been studied in this paper. Methods and Results: The influence of EtOH and PS on oil solubilization capability was clearly reflected in the phase behaviour of U-type microemulsion systems. One dilution-stable formulation ME (GML/EtOH/Tween 80/PS/water = 3 : 3 : 3·5 : 10·5 : 16) was selected. After 4 days of incubation, ME showed 80%A. niger growth inhibition at 0·2% and 72%P. italicum growth inhibition at 0·1%, respectively, and a delay of conidiation of 2 days compared with the control. In the antifungal activities of the microemulsion, GML and PS made major contributions with similar antifungal activities at a GML/PS weight ratio of 1: 3·5. Conclusions: Food-grade dilution-stable microemulsions prepared with GML as oil phase for antifungal purpose are feasible and solubilization of a hydrotrope contributes to the formation of microemulsions and enhanced antifungal activities. Significance and Impact of the Study: The present report represents the first to develop a food-grade microemulsion system for antifugal purpose.  相似文献   

5.
The influence of the vehicle on the release and permeation of fluconazole, a topical antifungal drug dissolved in Jojoba oil was evaluated. Series of Cutina lipogels (Cutina CPA [cetyl palmitate], CBS [mixture of glyceryl stearate, cetearyl alcohol, cetyl palmitate, and cocoglycerides], MD [glyceryl stearate], and GMS [glyceryl monostearate]) in different concentrations as well as gel microemulsion were prepared. In-vitro drug release in Sorensens citrate buffer (pH 5.5) and permeation through the excised skin of hairless mice, using a modified Franz diffusion cell, were performed. The rheological behavior and the apparent viscosity values for different gel bases were measured before and after storage under freezing conditions at −4 °C and were taken as measures for stability of network structure.Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved. The results of in vitro drug release and its percutaneous absorption showed that the highest values from gel microemulsion were assured. The rheological behavior of the prepared systems showed pseudoplastic (shear-thinning) flow indicating structural breakdown of the existing intermolecular interactions between polymeric chains. Moreover, the stability study revealed no significant difference between viscosity before and after storage for different formulae except for CPA Cutina lipogel (using analysis of variance [ANOVA] test at level of significance .05). The antifungal activity of fluconazole showed the widest zone of inhibition with gel microemulsion. The gel microemulsion is an excellent vehicle for fluconazole topical drug delivery.  相似文献   

6.
The aim of the present investigation was to develop and evaluate microemulsion-loaded hydrogels (MEHs) for the topical delivery of fluconazole (FZ). The solubility of FZ in oils, surfactants and cosurfactants was evaluated to identify the components of the microemulsion. The pseudo-ternary phase diagrams were constructed using the novel phase diagram by micro-plate dilution method. Carbopol EDT 2020 was used to convert FZ-loaded microemulsions into gel form without affecting their structure. The selected microemulsions were assessed for globule size, zeta potential and polidispersity index. Besides this, the microemulsion-loaded hydrogel (MEH) formulations were evaluated for drug content, pH, rheological properties and in vitro drug release through synthetic membrane and excised pig ear skin in comparison with a conventional hydrogel. The optimised MEH FZ formulations consisting of FZ 2%, Transcutol P 11.5% and 11%, respectively, as oil phase, Lansurf SML 20-propyleneglycol 52% and 50%, respectively, as surfactant–cosurfactant (2:1), Carbopol EDT 2020 1.5% as gelling agent and water 34.5% and 37%, respectively, showed highest flux values and high release rate values, and furthermore, they had low surfactant content. The in vitro FZ permeation through synthetic membrane and excised pig ear skin from the studied MEHs was best described by the zero-order and first-order models. Finally, the optimised MEH FZ formulations showed similar or slightly higher antifungal activity as compared to that of conventional hydrogel and Nizoral® cream, respectively. The results suggest the potential use of developed MEHs as vehicles for topical delivery of FZ, encouraging further in vitro and in vivo evaluation.KEY WORDS: fluconazole, in vitro skin permeation, microemulsion, microemulsion-loaded hydrogel, topical  相似文献   

7.
Aims: To study the antifungal activities of a prepared food‐grade dilution‐stable microemulsion against Aspergillus niger. Methods and Results: Results from the antifungal activity on solid medium by agar dilution method showed that the microemulsion caused complete growth inhibition at 2000 ppm, and at 1000 ppm, showed 55% growth inhibition after 4 days of incubation and a delay of conidiation by 1 day compared with controls. Results from the antifungal activity in liquid medium by broth dilution method showed that the growth of A. niger was completely inhibited when a liquid medium containing 106 spores per ml was treated with 500 ppm of microemulsion, which was determined by minimum fungicidal concentration. Study of fungicidal kinetics showed that more than 99% of viable spores were killed within 15 min. These antifungal activities were confirmed by scanning electron microscopy, light microscopy and increased Ca+2, K+ and Mg+2 leakages. Conclusions: The results suggest that the prepared microemulsions are effective antifungal systems with excellent growth inhibition and sporicidal activities, and indicate that their antifungal activity may be to the result of the disruption and dysfunction of A. niger cell walls and biological membranes. Significance and Impact of the Study: This study suggests the potential use of food‐grade dilution‐stable microemulsions for antifungal use in the food and pharmaceutical industries.  相似文献   

8.
Tenoxicam (TNX) is a non-steroidal anti-inflammatory drug (NSAID) used for the treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, backache and pain. However, prolonged oral use of this drug is associated with gastrointestinal adverse events like peptic ulceration, thus necessitating its development as topical formulation that could obviate the adverse effects and improve patient compliance. The present study was aimed at development of microemulsion-based formulations of TNX for topical delivery at the affected site. The pseudoternary phase diagrams were developed and microemulsion formulations were prepared using Captex 300/oleic acid as oil, Tween 80 as surfactant and n-butanol/ethanol as co-surfactant. Optimized microemulsions were characterized for drug content, droplet size, viscosity, pH and zeta potential. The ex vivo permeation studies through Laca mice skin were performed using Franz diffusion cell assembly, and the permeation profile of the microemulsion formulation was compared with aqueous suspension of drug and drug incorporated in conventional cream. Microemulsion formulations of TNX showed significantly higher (p?<?0.001) mean cumulative percent permeation values in comparison to conventional cream and suspension of drug. In vivo anti-arthritic and anti-inflammatory activity of the developed TNX formulations was evaluated using various inflammatory models such as air pouch model, xylene-induced ear edema, cotton pellet granuloma and carrageenan-induced inflammation. Microemulsion formulations were found to be superior in controlling inflammation as compared to conventional topical dosage forms and showed efficacy equivalent to oral formulation. Results suggest that the developed microemulsion formulations may be used for effective topical delivery of TNX to treat various inflammatory conditions.  相似文献   

9.
Amphotericin B (AmB), a potent antifungal drug, presents physicochemical characteristics that impair the development of suitable dosage forms. In order to overcome the AmB insolubility, several lipid carriers such as microemulsions have been developed. In this context, the bullfrog oil stands out as an eligible oily phase component, since its cholesterol composition may favor the AmB incorporation. Thus, the aim of this study was to develop a microemulsion based on bullfrog oil containing AmB. Moreover, its thermal stability, antifungal activity, and cytotoxicity in vitro were evaluated. The microemulsion formulation was produced using the pseudo-ternary phase diagram (PTPD) approach and the AmB was incorporated based on the pH variation technique. The antifungal activity was evaluated by determination of minimal inhibitory concentration (MIC) against different species of Candida spp. and Trichosporon asahii. The bullfrog oil microemulsion, stabilized with 16.8% of a surfactant blend, presented an average droplet size of 26.50?±?0.14 nm and a polydispersity index of 0.167?±?0.006. This system was able to entrap AmB up to 2 mg mL?1. The use of bullfrog oil as oily phase allowed an improvement of the thermal stability of the system. The MIC assay results revealed a growth inhibition for different strains of Candida spp. and were able to enhance the activity of AmB against T. asahii. The microemulsion was also able to reduce the AmB toxicity. Finally, the developed microemulsion showed to be a suitable system to incorporate AmB, improving the system’s thermal stability, increasing the antifungal activity, and reducing the toxicity of this drug.  相似文献   

10.
The objective of this investigation was to develop lorazepam (LZM) microemulsions as an alternative to the conventional cosolvent based formulation. Solubility of LZM in various oils and Tween 80 was determined. The ternary diagram was plotted to identify area of microemulsion existence and a suitable composition was identified to achieve desired LZM concentration. The LZM microemulsions were evaluated for compatibility with parenteral fluids, globule size, in vitro hemolysis and stability of LZM. Capmul MCM demonstrated highest solubilizing potential for LZM and was used as an oily phase. LZM microemulsions were compatible with parenteral dilution fluids and exhibited mean globule size less than 200 nm. The in vitro hemolysis studies indicated that microemulsions were well tolerated by erythrocytes. The LZM microemulsions containing amino acids exhibited good physical and chemical stability when subjected to refrigeration for 6 months.  相似文献   

11.
The aim of the present study was to investigate the potential of a phospholipid-based microemulsion formulation for parenteral delivery of anticancer drug, etoposide. The microemulsion area was identified by constructing pseudoternary phase diagrams. The prepared microemulsions were subjected to different thermodynamic stability tests. The microemulsion formulations that passed thermodynamic stability tests were characterized for optical birefringence, droplet size, viscosity measurement, and pH measurements. To assess the safety of the formulations for parenteral delivery, the formulation was subjected to compatibility studies with various intravenous infusions and in vitro erythrocyte toxicity study. The developed formulation was found to be robust and safe for parenteral delivery.  相似文献   

12.
Context: Atopic dermatitis (AD) is a chronic skin disease characterized by inflammation of the skin and has exhibited remarkable repercussions on human life across the globe. Fluocinolone acetonide (FA), a topical corticosteroid is employed in the treatment of atopic dermatitis, but suffers from limited penetration into deeper epidermis of atopic skin.

Objective: The present investigation was focused to explore the utility of β-cylcoethosomes in improvising the penetration deep into the skin.

Materials and methods: β-Cylcoethosomes developed using β-cycloamylose by injection method were evaluated for vesicle size, entrapment efficiency and in vitro release. Central Composite design employed for the preparation depicted FA8 as an optimized formulation which was then formulated as dermatological gel using carbomer 934P as a gel base. The gels were characterized for pH, viscosity, drug content and in vitro permeability.

Results and discussion: Optimized formulation (FA8) showed maximum desirability (0.795) with vesicle size of 228.33?±?1.23?nm), EE (82.49?±?1.21%) and CDR (90.90?±?0.29%). FA8-loaded gels showed maximum in vitro permeability as found in BG and BGP (83.22?±?0.72% and 84.02?±?0.87). BG was selected as an optimized gel and compared with optimized reference ethosomal gel and control gel. CLSM studies depicted deeper uniform penetration of fluorescent dye deep into the epidermis via BG. Improved penetration was observed due to the synergistic effect exerted by ethanol and β-cycloamylose.

Conclusion: β-cylcoethosomes proved to be a promising carrier for improvised penetration of fluocinolone acetonide via topical gel.  相似文献   

13.
Transdermal films of the furosemide were developed employing ethyl cellulose and hydroxypropyl methylcellulose as film formers. The effect of binary mixture of polymers and penetration enhancers on physicochemical parameters including thickness, moisture content, moisture uptake, drug content, drug–polymer interaction, and in vitro permeation was evaluated. In vitro permeation study was conducted using human cadaver skin as penetration barrier in modified Keshary–Chein diffusion cell. In vitro skin permeation study showed that binary mixture, ethyl cellulose (EC)/hydroxypropyl methylcellulose (HPMC), at 8.5:1.5 ratio provided highest flux and also penetration enhancers further enhanced the permeation of drug, while propylene glycol showing higher enhancing effect compared to dimethyl sulfoxide and isopropyl myristate. Different kinetic models, used to interpret the release kinetics and mechanism, indicated that release from all formulations followed apparent zero-order kinetics and non-Fickian diffusion transport except formulation without HPMC which followed Fickian diffusion transport. Stability studies conducted as per International Conference on Harmonization guidelines did not show any degradation of drug. Based on the above observations, it can be reasonably concluded that blend of EC–HPMC polymers and propylene glycol are better suited for the development of transdermal delivery system of furosemide.  相似文献   

14.
The objective of the present study was to formulate and evaluate microemulsion systems for topical delivery of clotrimazole (CTM). The solubility of CTM in various oils was determined to select the oil phase of the microemulsion systems. Pseudoternary phase diagrams were constructed to identify the area of microemulsion existence. Five CTM microemulsion formulations (M1–M5) were prepared and evaluated for their thermodynamic stability, pH, refractive index, droplet size, viscosity, and in vitro release across cellulose membrane. Among the prepared microemulsion formulations, M3 (lemon oil/Tween 80/n-butanol/water) and M4 (isopropyl myristate/Tween 80/n-butanol/water) microemulsion systems were found to be promising according to their physical properties and CTM cumulative percentage release. Gel form of M3 and M4 were prepared using 1% Carbopol 940 as the hydrogel matrix. Both formulations were evaluated in the liquid and gel forms for drug retention in the skin in comparison to the marketed CTM topical cream and their stability examined after storage at 40°C for 6 months. Microemulsion formulations achieved significantly higher skin retention for CTM over the CTM cream. Stability studies showed that M4 preparations were more stable than M3. The in vitro anti-fungal activity of M4 against Candida albicans was higher than that of the conventional cream. Moreover, clinical evaluation proved the efficacy and tolerability of this preparation in the treatment of various topical fungal infections.  相似文献   

15.
Griseofulvin, an antifungal agent, is a BCS class II drug slowly, erratically, and incompletely absorbed from the gastrointestinal tract in humans. The clinical failure of the conventional oral therapy of griseofulvin is most likely attributed to its poor solubility and appreciable inter- and intra-subject variation in bioavailability from different commercial products. Moreover, the conventional oral therapy is associated with numerous adverse effects and interactions with other drugs. The purpose of the study was to formulate a topical application of griseofulvin which would deliver the drug locally in a therapeutically effective concentration. Griseofulvin was solubilized in ethanol, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and combinations of ethanol with varying amounts of TPGS; then, it was incorporated in the Carbopol (980 NF) base. The formulations were characterized and evaluated ex vivo using Laca mice skin, microbiologically against Microsporum gypseum and Microsporum canis and clinically in a small group of patients. The current study suggested that TPGS and ethanol synergistically enhanced the drug permeation and drug retention in the skin. The selected formulation F VII was found to be effective against M. gypseum and M. canis, non-sensitizing, histopathologically safe, stable at 4°C, 25°C, and 40°C with respect to percent drug content, permeation characteristics, pH, transparency, feel, viscosity, and clinically effective in a small group of subjects. The proposed topical formulation of griseofulvin may be an effective and convenient alternative to the currently available oral therapy for the treatment of superficial fungal infections.  相似文献   

16.
The present study aimed to evaluate the potential of liposomes loaded with paromomycin (PA), an aminoglycoside antibiotic associated with poor skin penetration, for the topical treatment of cutaneous leishmaniasis (CL). Fluid liposomes were prepared and characterized for particle size, zeta potential, and drug entrapment. Permeation studies were performed with two in vitro models: intact and stripped skin. The antileishmanial activity of free and liposomal PA was evaluated in BALB/c mice infected by Leishmania (L.) major. Drug entrapment ranged from 10 to 14%, and the type of vesicle had little influence on this parameter. Particle size and polydispersity index of the vesicles composed by phosphatidylcholine (PC) and PC/cholesterol (Chol) ranged from of 516 to 362?nm and 0.7 to 0.4, respectively. PA permeation across intact skin was low, regardless of the formulation tested, while drug penetration into skin (percent of the applied dose) from PC (7.2?±?0.2%) and PC/Chol (4.8?±?0.2%) liposomes was higher than solution (1.9?±?0.1%). PA-loaded liposomes enhanced in vitro drug permeation across stripped skin and improved the in vivo antileishmanial activity in experimentally infected mice. Our findings suggest that the liposomes represent a promising alternative for the topical treatment of CL using PA.  相似文献   

17.
The objective of present investigation was to formulate self-microemulsifying drug delivery systems (SMEDDS) of tacrolimus (FK 506), a poorly water soluble immunosuppressant that exhibits low and erratic bioavailability. Solubility of FK 506 in various oils, surfactants cosurfactants and buffers was determined. Phase diagrams were constructed at different ratios of surfactant/cosurfactant (K m ) to determine microemulsion existence region. The effect of oil content, pH of aqueous phase, dilution, and incorporation of drug on mean globule size of resulting microemulsions was studied. The optimized SMEDDS formulation was evaluated for in vitro dissolution profile in comparison to pure drug and marketed formulation (Pangraf capsules). The in vivo immunosuppressant activity of FK 506 SMEDDS was evaluated in comparison to Pangraf capsules. Area of o/w microemulsion region in phase diagram was increased with increase in K m . The SMEDDS yielded microemulsion with globule size less than 25 nm which was not affected by the pH of dilution medium. The SMEDDS was robust to dilution and did not show any phase separation and drug precipitation even after 24 h. Optimized SMEDDS exhibited superior in vitro dissolution profile as compared to pure drug and Pangraf capsules. Furthermore, FK 506 SMEDDS exhibited significantly higher immunosuppressant activity in mice as compared to Pangraf capsules.  相似文献   

18.
The aim of the present study was to make a comparison of the in vitro release rate of diclofenac sodium (DS) from microemulsion (M) vehicles containing soybean oil, nonionic surfactants (Brij 58 and Span 80), and different alcohols (ethanol [E], isopropyl alcohol [I], and propanol [P]) as cosurfactant. The optimum surfactant:cosurfactant (S:CoS) weight ratios and microemulsion areas were detected by the aid of phase diagrams. Three microemulsion formulations were selected, and their physicochemical properties were examined for the pH, viscosity, and conductivity. According to the release rate of DS, M prepared with P showed the significantly highest flux value (0.059 +/- 0.018 mg/cm(2)/h) among all formulations (P < .05). The conductivity results showed that DS-loaded microemulsions have higher conductivity values (18.8-20.2 microsiemens/cm) than unloaded formulations (16.9-17.9 microsiemens/cm), and loading DS into the formulation had no negative effect on system stability. Moreover, viscosity measurements were examined as a function of shear rate, and Newtonian fluid characterization was observed for each microemulsion system. All formulations had appropriate observed pH values varying from 6.70 to 6.85 for topical application. A skin irritation study was performed with microemulsions on human volunteers, and no visible reaction was observed with any of the formulations. In conclusion, M prepared with P may be a more appropriate formulation than the other 2 formulations studied as drug carrier for topical application.  相似文献   

19.
Assimilation of ethyleneglycol (EG) ethers by polyethyleneglycol-utilizing bacteria was examined. Ethyleneglycol ether-utilizing bacteria were also isolated from soil and activated sludge samples by enrichment-culture techniques. Three strains (4-5-3, EC 1-2-1 and MC 2-2-1) were selected and characterized as Pseudomonas sp. 4-5-3, Xanthobacter autotrophicus, and an unidentified gram-negative, non-spore-forming rod respectively. Their growth characteristics were examined: Pseudomonas sp. 4-5-3 assimilated EG (diethyleneglycol, DEG) monomethyl, monoethyl and monobutyl ethers, DEG, propanol and butanol. X. autotrophicus EC 1-2-1 grew well on EG monoethyl and monobutyl ethers, EG and primary alcohols (C1-C4), and slightly on EG monomethyl ether. The strain MC 2-2-1 grew on EG monomethyl ether, EG, primary alcohols (C1-C4), and 1,2-propyleneglycol (PG). The mixed culture of Pseudomonas sp. 4-5-3 and X. autotrophicus EC 1-2-1 showed better growth and improved degradation than respective single cultures towards EG monomethyl, monoethyl or monobutyl ethers. Intact cells of Pseudomonas sp. 4-5-3 degraded various kinds of monoalkyl ethers, which cannot be assimilated by the strain. Metabolic products were characterized from reaction supernatants of intact cells of Pseudomonas sp. 4-5-3 with EG or DEG monoethyl ethers: they were analyzed by thin-layer chromatography and GC-MS and found to be ethoxyacetic acid and ethoxyglycoxyacetic acid. Also, PG monoalkyl ethers (C1-C4), dipropyleneglycol monoethyl and monomethyl ethers and tripropyleneglycol monomethyl ether were assimilated by polypropyleneglycol-utilizing Corynebacterium sp. 7.  相似文献   

20.
Chitosan-based carriers have important potential applications for the administration of drugs. In the present study, topical gel formulations of terbinafine hydrochloride (T-HCl) were prepared using different types of chitosan at different molecular weight, and the antifungal inhibitory activity was evaluated to suggest an effective formulation for the treatment of fungal infections. The characteristics of gel formulations were determined with viscosity measurements and texture profile analysis. Stability studies were performed at different temperatures during 3 months. The ex vivo permeation properties were studied through rat skin by using Franz diffusion cells. The antifungal inhibitory activity of formulations on Candida species and filamentous fungi was also examined with agar-cup method. The microbiological assay was found suitable for determination of in vitro antifungal activity of T-HCl. A marketed product was used to compare the results. The antifungal activity of T-HCl significantly increased when it was introduced into the chitosan gels. A higher drug release and the highest zone of inhibition were obtained from gels prepared with the lowest molecular weight chitosan (Protasan UP CL 213) compared to that of other chitosan gels and marketed product. These results indicated the advantages of the suggested formulations for topical antifungal therapy against Candida species and filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号