首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This study was carried out to compare the ecological function of exotic pine (Pinus radiata—Pr) and native pine (Pinus tabulaeformis—Pt) in terms of litter decomposition and its related N dynamics and to evaluate if the presence of broad-leaved tree species (Cercidiphyllum japonicum—Cj) or shrub species (Ostryopsis davidiana—Od) litter would promote the decomposition of pine needles and N cycling. Mass remaining, N release of the four single-species litters and mixed-species (Pt + Cj; Pr + Cj; Pt + Od; Pr + Od) litters and soil N dynamics were measured at microcosm scale during an 84-day incubation period. The Pt and Pr litter, with poorer substrate quality, indicated slower decomposition rates than did the Cj and Od litter. Due to their high C/N ratios, the N mass of Pt and Pr litter continuously increased during the early stage of decomposition, which showed that Pt and Pr litter immobilized exogenous N by microbes. No significant differences of soil inorganic, dissolved organic and microbial biomass N were found between the Pt and Pr microcosm at each sampling. The results showed that the exotic Pr performed similar ecological function to the native Pt in terms of litter decomposition and N dynamics during the early stage. The presence of Cj or Od litter increased the decomposition rates of pine needle litter and also dramatically increased soil N availability. So it is feasible for plantation managers to consider the use of Cj as an ameliorative species or to retain Od in pine plantations to promote the decomposition of pine litter and increase nutrient circulation. The results also suggested that different species litters induced different soil dissolved organic nitrogen (DON). As a major soluble N pool in soil, DON developed a different changing tendency over time compared with inorganic N, and should be included into soil N dynamic under the condition of our study.  相似文献   

2.
Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive effects on microbial activity and litter quality, which can be expected to result in enhanced mass loss and N release from Sphagnum and vascular plant litter. This is the first study that examines the combined effects of increased temperature and N deposition on decomposition in bogs. We investigated mass loss and N release at four bog sites along a gradient from north Sweden to northeast Germany in which both temperature and N deposition increased from north to south. We performed two litterbag experiments: one reciprocal experiment with Eriophorum vaginatum litter and one experiment using recalcitrant (Sphagnum fuscum) and more degradable (Sphagnum balticum) Sphagnum litter collected from the most northern site. We measured mass loss and N release during two (Sphagnum) and three (E. vaginatum) years. The N concentration and decomposability of the E. vaginatum litter did not differ between the sites. Mass loss from E. vaginatum litter increased over the gradient from north to south, but there was no such effect on Sphagnum litter. N loss of all litter types was affected by collection site, incubation site and time and all interactions between these factors. N release in Sphagnum was positively related to N concentration. We conclude that decomposition of vascular plants and Sphagnum litter is influenced by different environmental drivers, with enhanced temperatures stimulating mass loss of vascular plant litter, but not of Sphagnum. Enhanced N deposition increases Sphagnum litter N loss. As long‐term consequences of climate change will presumably entail a higher vascular plant production, overall litter decomposition rates are likely to increase, especially in combination with increased temperature.  相似文献   

3.
Aims We explored the decomposition rates of single- and mixed-species litter, the litter-mixing effect and the effect of component litters in a mixture on decomposition.Methods In a litter bag experiment, shoot litters from two dominant grasses (Leymus chinensis and Stipa baicalensis) and one legume (Melissitus ruthenica) were decomposed separately and as a mixture from May 2010 to September 2011 in the Hulun Buir meadow steppe of Inner Mongolia, China. We separated the litter mixture into its individual component litters (i.e. the different single-species litters) and analyzed the changes in litter mass remaining and litter nitrogen (N) remaining during single- and mixed-species litter decomposition.Important findings (i) Litter mixing had significant positive effects on litter decomposition. The litter-mixing effect was strongest for the mixture of S. baicalensis and L. chinensis litters, followed by the mixture of S. baicalensis and M. ruthenica litters. (ii) Single-species component litters decomposed faster in the mixtures than separately (positive effect), but these effects were not significant for legume species M. ruthenica litter. Relative to single-species litter decomposition, the decomposition rates of the two grass (S. baicalensis and L. chinensis) litters significantly increased when they were mixed with each other or with M. ruthenica litter. (iii) For each species litter type, the percentage of litter N remaining during decomposition (N R) differed between the single-species litter and mixed litter treatments. The N R of S. baicalensis litter was higher when it was decomposed in the mixture than in isolation. However, the N R of L. chinensis litter was lowest in its mixture with M. ruthenica among the treatments. Regardless of its decomposition in the mixture or in isolation, the N R of M. ruthenica litter varied little among treatments. There was a significant positive relationship between the N R and percentage of initial litter mass remaining in both the single litter and mixed litter treatments. These results suggest that N transfer may happen among component litters in mixture and further affect the decomposition.  相似文献   

4.
Abstract The large accumulation of organic matter in peatlands is primarily caused by slow rates of litter decomposition. We determined rates of decomposition of major peat-forming litters of vascular plants and mosses at five sites: a poor fen in New Hampshire and a bog hummock, a poor fen, a beaver pond margin and a beaver pond in Ontario. We used the litterbag technique, retrieving triplicate litterbags six or seven times over 3–5 years, and found that simple exponential decay and continuous-quality non-linear regression models could adequately characterize the decomposition in most cases. Within each site, the rate of decomposition at the surface was generally Typha latifolia leaves = Chamaedaphne calyculata leaves = Carex leaves > Chamaedaphne calyculata stems > hummock Sphagnum = lawn/hollow Sphagnum, with exponential decay constant (k) values generally ranging from 0.05 to 0.37 and continuous-quality model initial quality (q 0 ) values ranging from 1.0 (arbitrarily set for Typha leaves) to 0.7 (Sphagnum). In general, surface decay rates were slowest at the bog hummock site, which had the lowest water table, and in the beaver pond, which was inundated, and fastest at the fens. The continuous-quality model site decomposition parameter (u 0 ) ranged from 0.80 to 0.17. Analysis of original litter samples for carbon, nitrogen and proximate fractions revealed a relatively poor explanation of decomposition rates, as defined by k and q 0 , compared to most well-drained ecosystems. Three litters, roots of sedge and a shrub and Typha leaves, were placed at depths of 10, 30 and 60 cm at the sites. Decomposition rates decreased with depth at each site, with k means of 0.15, 0.08 and 0.05 y−1 at 10, 30 and 60 cm, respectively, and u 0 of 0.25, 0.13 and 0.07. These differences are primarily related to the position of the water table at each site and to a lesser extent the cooler temperatures in the lower layers of the peat. The distinction between bog and fen was less important than the position of the water table. These results show that we can characterize decomposition rates of surface litter in northern peatlands, but given the large primary productivity below-ground in these ecosystems, and the differential rates of decomposition with depth, subsurface input and decomposition of organic matter is an important and relatively uncertain attribute.  相似文献   

5.
Many invasive plant species strongly alter ecosystem processes by producing leaf litter that decomposes faster and releases N more quickly than that of native species. However, while most studies of invasive species litter impacts have only considered the decomposition of species in monoculture, forest litter layers typically contain litter from many species. Many litter mixtures decompose in a non‐additive manner, in which the mixture decomposes more quickly (synergistic effect) or more slowly (antagonistic effect) than would be expected based on decomposition of the component species’ litters in isolation. We investigated the potential for non‐additive effects of invasive species’ litter by conducting a one‐year litter bag experiment in which we mixed the litters of four native tree species with each of four invasive species. Litter mixtures frequently lost mass at non‐additive rates, although not at every loading ratio, and the presence, sign, and strength of effects depended on species composition. Non‐additive effects on N loss occurred in more litter combinations, and were almost always antagonistic at 90 days and synergistic at 365 days. Invasive species litter with lower C:N led to more strongly synergistic N loss with time. During the growing season, non‐additive patterns of N loss almost always resulted in increased N release – up to six times greater than would be expected based on single‐species decomposition. Consequently, we suggest that invasive species may further synchronize N release from the litter layer with plant N demand, enhancing any positive litter feedback to invasion. These results highlight the need to consider non‐additive effects of litter mixing in invaded forest communities, and suggest that estimates of invasive species’ impacts on ecosystem processes would be improved by considering these effects.  相似文献   

6.
Increasing rates of atmospheric nitrogen (N) deposition may reduce growth and accelerate decomposition of Sphagnum mosses in bogs. Sphagnum growth and rates of Sphagnum litter decomposition may also vary because of climate change as both processes are controlled by climatic factors. The initial purpose of this study was to assess if growth and litter decomposition of hummock and lawn Sphagnum species varied with increasing N input in a factorial mid‐term (2002–2005) experiment of N and phosphorus (P) addition, in a bog on the southern Alps of Italy. However, as the experimental period was characterized by an exceptional heat wave in summer 2003, we also explored the interacting effects of fertilization and strongly varying climate on growth and decomposition rates of Sphagnum. The heat wave implied strong dehydration of the upper Sphagnum layer even if precipitation in summer 2003 did not differ appreciably from the overall mean. Sphagnum production was somewhat depressed by high levels (3 g m−2 yr−1) of N addition without concomitant addition of P presumably because of nutrient imbalance in the tissues, but production rates were much lower than the overall means in 2003, when no effect of nutrient addition could be observed. Adding N at high level also increased the potential decay of Sphagnum litter. Higher CO2 emission from N‐fertilized litter was due to amelioration of litter chemistry showing lower C/N quotients in the N‐fertilized treatments. Rates of CO2 emission from incubated litter also were more strongly affected by water content than by nutrient status, with practically no CO2 emission detected when litter was dry. We conclude that higher rates of atmospheric N availability input may depress Sphagnum growth because of P, and presumably potassium, (co‐)limitation. Higher N availability is also expected to promote potential decay of Sphagnum litter by ameliorating litter chemistry. However, both effects are less pronounced if the growing Sphagnum apex and the underlying senescing tissues dry out.  相似文献   

7.
Investigations of how species compositional changes interact with other aspects of global change, such as nutrient mobilization, to affect ecosystem processes are currently lacking. Many studies have shown that mixed species plant litters exhibit non‐additive effects on ecosystem functions in terrestrial and aquatic systems. Using a full‐factorial design of three leaf litter species with distinct initial chemistries (carbon:nitrogen; C:N) and breakdown rates (Liriodendron tulipifera, Acer rubrum and Rhododendron maximum), we tested for additive and non‐additive effects of litter species mixing on breakdown in southeastern US streams with and without added nutrients (N and phosphorus). We found a non‐additive (antagonistic) effect of litter mixing on breakdown rates under reference conditions but not when nutrient levels were elevated. Differential responses among single‐species litters to nutrient enrichment contributed to this result. Antagonistic litter mixing effects on breakdown were consistent with trends in litter C:N, which were higher for mixtures than for single species, suggesting lower microbial colonization on mixtures. Nutrient enrichment lowered C:N and had the greatest effect on the lowest‐ (R. maximum) and the least effect on the highest‐quality litter species (L. tulipifera), resulting in lower interspecific variation in C:N. Detritivore abundance was correlated with litter C:N in the reference stream, potentially contributing to variation in breakdown rates. In the nutrient‐enriched stream, detritivore abundance was higher for all litter and was unrelated to C:N. Thus, non‐additive effects of litter mixing were suppressed by elevated streamwater nutrients, which increased nutrient content of all litter, reduced variation in C:N among litter species and increased detritivore abundance. Nutrients reduced interspecific variation among plant litters, the base of important food web pathways in aquatic ecosystems, affecting predicted mixed‐species breakdown rates. More generally, world‐wide mobilization of nutrients may similarly modify other effects of biodiversity on ecosystem processes.  相似文献   

8.
Decomposition dynamics in mixed-species leaf litter   总被引:57,自引:1,他引:57  
Literature on plant leaf litter decomposition is substantial, but only in recent years have potential interactions among leaves of different species during decomposition been examined. We review emerging research on patterns of mass loss, changes in nutrient concentration, and decomposer abundance and activity when leaves of different species are decaying in mixtures. Approximately 30 papers have been published that directly examine decomposition in leaf mixtures as well as in all component species decaying alone. From these litter‐mix experiments, it is clear that decomposition patterns are not always predictable from single‐species dynamics. (Characteristics of decomposition in litter‐mixes that deviate from responses predicted from decomposition of single‐species litters alone are designated "non‐additive"; "additive" responses in mixes are predictable from component species decaying alone.) Non‐additive patterns of mass loss were observed in 67% of tested mixtures; mass loss is often (though not always) increased when litters of different species are mixed. Observed mass loss in some mixtures is as much as 65% more extensive than expected from decomposition of single‐species litter, but more often mass loss in mixtures exceeds expected decay by 20% or less. Nutrient transfer among leaves of different species is striking, with 76% of the mixtures showing non‐additive dynamics of nutrient concentrations. Non‐additive patterns in the abundance and activity of decomposers were observed in 55% and 65% of leaf mixes, respectively. We discuss some methodological details that likely contribute to conflicting results among mixed‐litter studies to date. Enough information is available to begin formulating mechanistic hypotheses to explain patterns in litter‐mix experiments. Emerging patterns in the mixed‐litter decomposition literature have implications for relationships between biodiversity and ecosystem function (in this case, the function being decomposition), and for potential mechanisms through which invasive plant species could alter carbon and nutrient dynamics in ecosystems.  相似文献   

9.
1. Decomposition of litter mixtures in both terrestrial and aquatic ecosystems often shows non‐additive diversity effects on decomposition rate, generally interpreted in streams as a result of the feeding activity of macroinvertebrates. The extent to which fungal assemblages on mixed litter may influence consumption by macroinvertebrates remains unknown. 2. We assessed the effect of litter mixing on all possible three‐species combinations drawn from four tree species (Alnus glutinosa, Betula pendula, Juglans regia and Quercus robur) on both fungal assemblages and the rate of litter consumption by a common shredder, Gammarus fossarum. After a 9‐week inoculation in a stream, batches of leaf discs were taken from all leaf species within litter mixture combinations. Ergosterol, an indicator of fungal biomass, and the composition of fungal assemblages, assessed from the conidia released, were determined, and incubated litter offered to G. fossarum in a laboratory‐feeding experiment. 3. Mixing leaf litter species enhanced both the Simpson’s index of the fungal assemblage and the consumption of litter by G. fossarum, but had no clear effect on mycelial biomass. Specifically, consumption rates of J. regia were consistently higher for mixed‐species litter packs than for single‐species litter. In contrast, the consumption rates of B. pendula were not affected by litter mixing, because of the occurrence of both positive and negative litter‐mixing effects in different litter species combinations that counteracted each other. 4. In some litter combinations, the greater development of some fungal species (e.g. Clavariopsis aquatica) as shown by higher sporulation rates coincided with increased leaf consumption, which may have resulted from feeding preferences by G. fossarum for these fungi. 5. Where litter mixture effects on decomposition rate are mediated via shredder feeding, this could be due to indirect effects of the fungal assemblage.  相似文献   

10.
11.
Evaluating how decomposition rates and litter nutrient release of different litter types respond to changes in water conditions is crucial for understanding global carbon and nutrient cycling. However, it is unclear how decreasing water affects litter mixture interactions for the maize–poplar system in arid regions. Here, the responses of the litter decomposition process and litter mixture interactions in the agroforestry system to changes in water conditions (control, light drought, and moderate drought) were tested. Moderate drought significantly decreased the decomposition rate for poplar leaf and mixed litters, and decomposition rate was significantly reduced for maize straw litter in light and moderate drought stress. The mass loss rates of maize straw and mixed litters were significantly higher than that of the poplar leaf litter under drought conditions, but there was no significant difference among the three litter types in the control. There was no interaction between mass loss of the mixed litter in the control and light drought conditions, and the litter mixture interaction showed nonadditive synergistic interactions under moderate drought. In terms of nutrient release, there was also no interaction between litter mixture with nitrogen and carbon, but there was antagonistic interaction with potassium release under the light drought condition. Our results demonstrate that drought conditions can lead to decreasing decomposition rate and strong changes in the litter mixture interactions from additive effects to nonadditive synergistic effects in moderate drought. Moreover, light drought changed the mixture interaction from an additive effect to an antagonistic interaction for potassium release.  相似文献   

12.
Micael Jonsson  David A. Wardle 《Oikos》2008,117(11):1674-1682
Litter decomposition is an important driver of terrestrial systems, and factors that determine decomposition rate for individual litter species have been widely studied. Fewer studies have explored the factors that regulate how mixing litters of multiple species affects litter decomposition and nutrient dynamics, and only a handful of studies have investigated how litter‐mixing effects may differ among different habitats or ecosystems, or how they respond to environmental gradients. We used a well‐established retrogressive chronosequence involving thirty lake islands in northern Sweden in which time since fire disturbance increases with decreasing island size; smaller islands therefore have reduced rates of aboveground and belowground ecosystem processes. On each of these islands we utilized plots with and without the long‐term experimental removal of shrubs. Litters from the six most common plant species on the islands were prepared in single‐, three‐ and six‐species litterbags, and placed on both the shrub‐removal and non‐removal plots on each island to decompose for one year. We found significant non‐additive effects of litter mixing on litter decomposition rates, on final litter N and P concentrations, and on litter N loss, but these non‐additive effects varied both in direction and magnitude with changed number of species, and even among litter mixtures with the same number of species. Further, the magnitude of non‐additive effects of litter mixing on both litter decomposition and nutrient dynamics was significantly influenced by both island size and the interaction between island size and shrub‐removal treatment. When shrubs were present, there was a U‐shaped relationship between these non‐additive effects and island size, while the relationship was positive when shrubs were removed. Hence, our results support previous findings that litter mixing may produce non‐additive effects on litter decomposition and nutrient dynamics, and that these effects tend to be idiosyncratic due to the importance of effects of individual species in the mixture. Most importantly, our results show that non‐additive litter‐mixing effects change greatly across environmental gradients, meaning that the biotic and abiotic characteristics of an ecosystem can be a powerful driver of the magnitude and even the direction of litter‐mixing effects on ecosystem processes.  相似文献   

13.
Plant species and growth forms differ widely in litter chemistry, which affects decay and may have important consequences for plant growth via e.g. the release of nutrients and growth-inhibitory compounds. We investigated the overall short-term (9.5 months) and medium-term (21.5 months) feedback effects of leaf litter quality and quantity on plant production, and tested whether growth forms can be used to generalise differences among litter species. Leaf litter effects of 21 sub-arctic vascular peatland species on Poa alpina test plants changed clearly with time. Across all growth forms, litter initially reduced plant biomass compared with untreated plants, particularly litters with a high decomposition rate or low initial lignin/P ratio. In the second year, however, litter effects were neutral or positive, and related to initial litter N concentration (positive), C/N, polyphenol/N and polyphenol/P ratios (all negative), but not to decomposability. Differences in effect size among several litter species were large, while differences in response to increasing litter quantities were not significant or of similar magnitude to differences in response to three contrasting litter species. Growth forms did not differ in initial litter effects, but second-year plant production showed a trend (P < 0.10) for differences in response to litters of different growth forms: evergreen shrubs < graminoids or deciduous shrubs < forbs. While long-persisting negative litter effects were predominant across all growth forms, our data indicate that even within nutrient-constrained ecosystems such as northern peatlands, vascular plant species, and possibly growth forms, differ in litter feedbacks to plant growth. Differences in the composition of undisturbed plant communities or species shifts induced by external disturbance, such as climate change, may therefore feedback strongly to plant biomass production and probably nutrient cycling rates in northern peatlands. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
15.
Rates of decomposition, and soil faunal abundance and diversity associated with single-species and mixed-species litters were studied in a litter bag experiment in an oak–pine forest. We used two canopy species of leaf litter, pine and oak, and one shrub species, Sasa, and compared decomposition rates, and soil microarthropod abundance and community structure of oribatid mites in the litter bags. Mass loss of single species decreased in the order: oak > pine > Sasa. While the total mass loss rates of mixed litter were intermediate between those of the constituent species, enhancement of mass loss from the three-species mixture and from mixed slow-decomposing litters (pine and Sasa) was observed. Faunal abundance in litter bags was higher in mixed-species litter than in those with single-species litter, and species richness of oribatid mites was also higher in the three-species mixed litter. Faunal abundance in single-species litter bags was not correlated with mass loss, although enhancement of mass loss in mixed litter bags corresponded with higher microarthropod abundance. Habitat heterogeneity in mixed litter bags seemed to be responsible for the more abundant soil microarthropod community.  相似文献   

16.
Peat mosses (Sphagnum) largely govern carbon sequestration in Northern Hemisphere peatlands. We investigated functional traits related to growth and decomposition in Sphagnum species. We tested the importance of environment and phylogeny in driving species traits and investigated trade‐offs among them. We selected 15 globally important Sphagnum species, representing four sections (subgenera) and a range of peatland habitats. We measured rates of photosynthesis and decomposition in standard laboratory conditions as measures of innate growth and decay potential, and related this to realized growth, production, and decomposition in their natural habitats. In general, we found support for a trade‐off between measures of growth and decomposition. However, the relationships are not strong, with r ranging between 0.24 and 0.45 for different measures of growth versus decomposition. Using photosynthetic rate to predict decomposition in standard conditions yielded R2 = 0.20. Habitat and section (phylogeny) affected the traits and the trade‐offs. In a wet year, species from sections Cuspidata and Sphagnum had the highest production, but in a dry year, differences among species, sections, and habitats evened out. Cuspidata species in general produced easily decomposable litter, but their decay in the field was hampered, probably due to near‐surface anoxia in their wet habitats. In a principal components analysis, PCA, photosynthetic capacity, production, and laboratory decomposition acted in the same direction. The species were imperfectly clustered according to vegetation type and phylogeny, so that some species clustered with others in the same section, whereas others clustered more clearly with others from similar vegetation types. Our study includes a wider range of species and habitats than previous trait analyses in Sphagnum and shows that while the previously described growth–decay trade‐off exists, it is far from perfect. We therefore suggest that our species‐specific trait measures offer opportunities for improvements of peatland ecosystem models. Innate qualities measured in laboratory conditions translate differently to field responses. Most dramatically, fast‐growing species could only realize their potential in a wet year. The same species decompose fast in laboratory, but their decomposition was more retarded in the field than that of other species. These relationships are crucial for understanding the long‐term dynamics of peatland communities.  相似文献   

17.
This study was designed to examine saprophytic fungi diversity under different tree species situated in the same ecological context. Further, the link between the diversity and decomposition rate of two broadleaved, two coniferous and two mixed broadleaved-coniferous litter types was targeted. Litter material was decomposed in litter bags for 4 and 24 months to target both early and late stages of the decomposition. Fungal diversity of L and F layers were also investigated as a parallel to the litter bag method. Temperature gradient gel electrophoresis fingerprinting was used to assess fungal diversity in the samples. Mass loss values and organic and nutrient composition of the litter were also measured. The results showed that the species richness was not strongly affected by the change of the tree species. Nevertheless, the community compositions differed within tree species and decomposition stages. The most important shift was found in the mixed litters from the litter bag treatment for both variables. Both mixed litters displayed the highest species richness (13.3 species both) and the most different community composition as compared to pure litters (6.3–10.7 species) after 24 months. The mass loss after 24 months was similar or greater in the mixed litter (70.5% beech–spruce, 76.2% oak–Douglas-fir litter) than in both original pure litter types. This was probably due to higher niche variability and to the synergistic effect of nutrient transfer between litter types. Concerning pure litter, mass loss values were the highest in oak and beech litter (72.8% and 69.8%) compared to spruce and D. fir (59.4% and 66.5%, respectively). That was probably caused by a more favourable microclimate and litter composition in broadleaved than in coniferous plantations. These variables also seemed to be more important to pure litter decomposition rates than were fungal species richness or community structure.  相似文献   

18.
Identifying the environmental factors controlling litter decomposition is key to understanding the magnitude and rates of nutrient cycling in tropical forests, and how they may be influenced by climate variability and environmental change. We carried out a leaf litter translocation experiment in mature rain forest over a 2,520 m altitudinal gradient in Costa Rica. Leaf litter decomposition rates (k) of ten tree species, two dominant species from each ecosystem, plus two standard species, were calculated over 540 days in four life zones. k was lowest in montane with 0.83 per year and lower montane forests with 2.21 per year. k did not differ between lowland and premontane forests at 3.12 per year, in spite of the 3℃ difference of mean annual temperature between these life zones. k varied fourfold among species. Species decomposition rates ranked as follows, and were predictably related to leaf economic spectrum traits of the species: Acalypha communis (standard, fast decomposer)» Hyeronima oblonga > Alchornea latifolia, Quercus bumelioides, Jarava ichu (standard, slow decomposer)> Minquartia guianensis > Magnolia sororum > Vochysia allenii > Pourouma bicolor, Carapa guianensis. These two slowest-decomposing species were native premontane and lowland forest dominants, respectively, with tough, low-nutrient leaves. The ranking of species by k varied very little among life zones suggesting that decomposer organisms in very different ecosystems and environments react in similar ways to the litter quality in general. We conclude that while k decreases with temperature in rain forests on tropical mountains, bioclimatic zones defined as premontane may be “functionally lowland.” The effects of species identity on decomposition rates on tropical mountains are consistent and independent of environment for both standard and native species. Under climate change on these mountains, if moisture regimes do not change, decomposition rates will increase due to rising temperatures. Soil carbon storage may therefore decrease. Changes in the altitudinal distributions of currently dominant species will also affect this critically important biogeochemical process.  相似文献   

19.
Sun  Zhongyu  Huang  Yuhui  Yang  Long  Guo  Qinfeng  Wen  Meili  Wang  Jun  Liu  Nan 《Landscape and Ecological Engineering》2020,16(2):151-162

Litter decomposition, an important component of nutrient cycling, is often one of the limiting factors for the development of monoculture tree plantations for restoration, and how to improve the litter decomposition rate remains as a major challenge. To help resolve this issue, we developed a mixed-litter transplantation approach to improve the litter decomposition and nutrient cycling in Schima superba, Cunninghamia lanceolata, Eucalyptus urophylla, and Acacia mangium monoculture plantations in China. The monospecific leaf litters of the four species were collected and their possible two-, three- and four-species combinations were transplanted between plantations. We examined the influences of home/away field, litter species richness, and litter composition on litter decomposition during 24 months treatment. A significant effect of litter composition on litter decomposition (Duration?×?Composition effect) was detected in E. urophylla plantation. The influence of litter richness on litter decomposition was significant in A. mangium plantation (Duration?×?Richness effect). The litter of C. lanceolata and A. mangium had a distinct home-field advantage, while the litter of S. superba had a distinct away-field advantage in decomposition. We observed a positive relationship between richness and litter decomposition in C. lanceolate plantation. The effect of Duration?×?Species Interaction on litter decomposition, was significant in E. urophylla plantation, indicating a non-additive effect. Litter decomposition in E. urophylla plantation could be explained by idiosyncratic model, and the rivet model may be appropriate to illustrate the litter decomposition in A. mangium plantation. Finally, since the litter decomposition in degraded A. mangium plantations had a distinct home-field advantage and was significantly affected by litter richness, transplanting mixed litters of neighboring plantations may be beneficial to improve its litter decomposition rate. Transplanting of S. superba litters due to the distinct home-field advantage to neighboring plantations such as E. urophylla plantation whose litter decomposition is significantly affected by litter composition, may be an effective management method for improving litters decomposition.

  相似文献   

20.
Bell T  Neill WE  Schluter D 《Oecologia》2003,137(4):578-586
Abstract We tested the hypothesis that interactions in litter mixtures (expressed as the difference between observed and expected decomposition rates) are greater when the component species differ more in their initial litter chemistry. Thereto, we collected freshly senesced leaf litter from a wide range of species from an old field and woodland vegetation, and a fen ecosystem in The Netherlands. Litterbags with either mono-specific litter (20 and 15 species), or litter mixtures (50 and 42 species pairs) of randomly drawn combinations of two representatives from different plant functional types were incubated for 20, 35 and 54 weeks in a purpose-built decomposition bed (woodland/old field) or in the field (fen). Species showed a wide range of decomposition rates. For the woodland/old field species, initial litter C and P concentrations were significantly correlated with litter decomposition rate. For the fen species, litter phenolics concentration was correlated with decomposition rate. If the Sphagnum species were left out of the analyses, initial litter P and phenolics concentration both showed a significant relationship, albeit only with the remaining mass after 1 year. Differences between observed and expected decomposition were often considerable in individual litter mixtures. Regression analysis showed that such differences were not related to the differences in litter chemistry of the component species. Furthermore, litter mixtures containing species with very different initial litter chemistry did not show stronger interaction when tested against litter mixtures containing chemically similar litter types. From these observations we conclude that the difference in initial single litter chemistry parameters of the component is not a useful concept to explain interactions in litter mixtures.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号