首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the secondary structure of 1–40 β-amyloid peptides by Fourier-transform infrared spectroscopy (FTIR) and characterized the peptide photophysical properties before and after self-assembly by using intrinsic tyrosine steady-state and time-resolved fluorescence. All measurements were performed in the presence and absence of hypericin (Hyp), an exogenous natural polycyclic pigment that has been shown to inhibit fibril formation and has also been used as a fluorescent probe. We monitored the time course of the aggregation process measuring 405 nm light diffusion at 90° and used thioflavin T to reveal the presence of fibrils. FTIR quantitative analysis evidenced a prevalent random conformation at t = 0 with and without Hyp. Fibrils showed a predominant parallel β-sheet structure and a small percentage of α-helix. The results of fluorescence measurements showed that Hyp does significantly interact with peptides in β-sheet conformation. In conclusion, hypericin does hinder the formation of fibrils, but the percentages of parallel β-sheets were not significantly different from those found in samples not treated with Hyp.  相似文献   

2.
LV-peptides were designed as membrane-spanning low-complexity model structures that mimic fusion protein transmembrane domains. These peptides harbor a hydrophobic core sequence that consists of helix-promoting and helix-destabilizing residues at different ratios. Previously, the fusogenicity of these peptides has been shown to increase with the conformational flexibility of their hydrophobic cores as determined in isotropic solution. Here, we examined the secondary structure, orientation, and distribution of LV-peptides in membranes. Our results reveal that the peptides are homogeneously distributed within the membranes of giant unilamellar liposomes and capable of fusing them. Increasing the valine content of the core up to the level of the β-branched residue content of SNARE TMDs (∼50%) enhances fusogenicity while maintaining a largely α-helical structure in liposomal membranes. A further increase in valine content or introduction of a glycine/proline pair favors β-sheet formation. In planar bilayers, the α-helices adopt oblique angles relative to the bilayer normal and the ratio of α-helix to β-sheet responds more sensitively to valine content. We propose that the fusogenic conformation of LV-peptides is likely to correspond to a membrane-spanning α-helix. β-Sheet formation in membranes may be considered a side-reaction whose extent reflects conformational flexibility of the core.  相似文献   

3.
The terminally protected peptide Boc-Leu-Val-Phe-Phe-Ala-OMe bearing sequence similarity with the central hydrophobic cluster (CHC) of Alzheimer’s Aβ17–21 peptide self-assembles to produce amyloid-like straight unbranched fibrils from organic solvents. The fibrils readily bind with a physiological dye Congo red (CR) and exhibits green gold birefringence under polarized light, a characteristic feature of amyloid plaque obtained from many neurodegenerative diseases. FTIR spectroscopy and in silico energy minimization study shed some light on the antiparallel supramolecular β-sheet aggregation of the peptide.  相似文献   

4.
The sequence specific 1H, 13C, and 15N resonance assignments of Hahellin, a putative member of βγ-crystallin family, from Hahella Chejuensis, have been accomplished by NMR spectroscopy. The resonance assignments reveal that the protein adopts predominantly a β-sheet conformation as in the case of βγ-crystallin folds.  相似文献   

5.
β-Amino acids with side chains at C2 and/or at C3 are of growing interest in drug design, as they may induce astonishing and unusual peptide conformations. Therefore it is of eminent importance to gather information on the consequences of β-amino acid incorporation on the three-dimensional structure of a peptide. This paper describes the synthesis and conformational analysis of cyclic penta- and hexapeptides comprising either (S)-Pro or (S)-β-Hpro. The conformational influence of the β-homoproline building block was analyzed by the combined application of CD, FT-IR and NMR. While the CD spectra of the proline containing peptides indicate the presence of inverse γ-turns and βII-turns, the CD spectra of the β-homoamino acid analogs are dominated by an unprecedented negative band near 205 nm associated with a pseudo-β-turn (Ψβ) or pseudo-γ-turn (Ψγ). These results were confirmed by FT-IR spectroscopy, which also indicates the formation of two internal hydrogen bonds in the cyclic peptides containing the β-homoproline. The conformations of the β-homoproline containing pentapeptides were additionally determined by NMR in combination with MD simulations in two different solvents. The conformation in trifluoroethanol (TFE) is characterized by a bifurcated hydrogen bond stabilizing a pseudo-γ-turn with β-homoproline in the central position, nested with a pseudo-β-turn with β-homoproline in the i+1 position. The combined CD/FT-IR studies clearly show that the replacement of proline by β-homoproline gives rise to a more flexible peptide backbone, and CD spectroscopy hints towards the presence of pseudo-β- or pseudo-γ-turns.  相似文献   

6.
The amyloidoses are a group of disorders characterized by aberrant protein folding and assembly, leading to the deposition of insoluble protein fibrils (amyloid), which provokes cell dysfunction and later cell death. One of the physiologically relevant environmental factors able to affect the conformation and hence the aggregation properties of amyloidogenic proteins/peptides is metal ions. Zn(II) promotes aggregation of most amyloidogenic peptides/proteins in vitro, including amyloid β protein (Aβ), but the underlying mechanism is not known. To better understand this mechanism the present study focused on the partially α-helical conformer, supposed to be an intermediate in Aβ aggregation. This partially α-helical conformer is stabilized by 10–20% 2,2,2-trifluoroethanol (TFE): therefore, the influence of Zn binding on the aggregation of the amylidogenic model peptide Aβ(1–28) (Aβ28) was investigated at different TFE concentrations. The results showed a synergistic effect of Zn(II) and 10% TFE, i.e., that either Zn or 10% TFE accelerated Aβ28 aggregation on its own, but with them together an at least 10 times promotion of Aβ28 aggregation was observed. Further studies by thioflavin T fluorescence spectroscopy, transmission electron microscopy, and circular dichroism (CD) spectroscopy suggested that the aggregates of Zn-Aβ28 formed in 10%TFE contain a β-sheet secondary structure and are more of the amyloid type. CD spectroscopy indicated that Zn binding disrupted partially the α-helical structure of Aβ28 in TFE. Thus, we propose that the promotion of Aβ28 aggregation by Zn is based on the transformation of the partially α-helical conformer (intermediate) towards the β-sheet amyloid structure by a destabilization of the α-helix in the intermediate. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Peter FallerEmail: Email:
  相似文献   

7.
Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins   总被引:12,自引:0,他引:12  
Antimicrobial peptides, which have been isolated from many bacteria, fungi, plants, invertebrates and vertebrates, are an important component of the natural defenses of most living organisms. The isolated peptides are very heterogeneous in length, sequence and structure, but most of them are small, cationic and amphipathic. These peptides exhibit broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts, fungi and enveloped viruses. A wide variety of human proteins and peptides also have antimicrobial activity and play important roles in innate immunity. In this review we discuss three important groups of human antimicrobial peptides. The defensins are cationic non-glycosylated peptides containing six cysteine residues that form three intramolecular disulfide bridges, resulting in a triple-stranded β-sheet structure. In humans, two classes of defensins can be found: α-defensins and β-defensins. The defensin-related HE2 isoforms will also be discussed. The second group is the family of histatins, which are small, cationic, histidine-rich peptides present in human saliva. Histatins adopt a random coil conformation in aqueous solvents and form α-helices in non-aqueous solvents. The third group comprises only one antimicrobial peptide, the cathelicidin LL−37. This peptide is derived proteolytically from the C-terminal end of the human CAP18 protein. Just like the histatins, it adopts a largely random coil conformation in a hydrophilic environment, and forms an α-helical structure in a hydrophobic environment.  相似文献   

8.
It is generally assumed that fusogenic peptides would require a certain conformation, which triggers or participates in the rate-determining step of membrane fusion. Previous structure analyses of the viral fusion peptide from gp41 of HIV-1 have yielded contradictory results, showing either an α-helical or a β-stranded conformation under different conditions. To find out whether either of these conformations is relevant in the actual fusion process, we have placed sterically demanding substitutions into the fusion peptide FP23 to prevent or partially inhibit folding and self-assembly. A single substitution of either D- or L-CF3-phenylglycine was introduced in different positions of the sequence, and the capability of these peptide analogues to fuse large unilamellar vesicles was monitored by lipid mixing and dynamic light scattering. If fusion proceeds via a β-stranded oligomer, then the D- and L-epimers are expected to differ systematically in their activity, since the D-epimers should be unable to form β-structures due to sterical hindrance. If an α-helical conformation is relevant for fusion, then the D-epimers would be slightly disfavoured compared to the L-forms, hence a small systematic difference in fusion activity should be observed. Interestingly, we find that (1) all D- and L-epimers are fusogenically active, though to different extents compared to the wild type, and – most importantly – (ii) there is no systematic preference for either the D- or L-forms. We therefore suggest that a well-structured α-helical peptide conformation or a β-stranded oligomeric assembly can be excluded as the rate-determining state. Instead, fusion appears to involve conformationally disordered peptides with a pronounced structural plasticity. Dedicated to Prof. K. Arnold on the occasion of this 65th birthday.  相似文献   

9.
Summary RP135 is a 24-residue peptide corresponding to the principal neutralizing determinant of the envelope glycoprotein gp120 of the human immunodeficiency virus type 1. We have studied the conformation of RP135 in complex with a neutralizing antibody 0.5β raised against gp120 by 2D NMR spectroscopy. The antigenic determinant recognized by this antibody was mapped using a combination of HOHAHA and ROESY measurements, in which resonances of the Fab and the tightly bound peptide residues are eliminated and the mobile residues of the bound peptide are sequentially assigned. We found that residues Ser6-Thr19 are part of the epitope, while Lys5 and Ile20 are at its boundaries. Difference spectroscopy was applied to study the conformation of the bound peptide representing the epitope within the 52 kDa of the Fab complex. Specific residues of the peptide were deuterated or replaced and the difference between the NOESY spectrum of the complex with the unlabeled residue and the NOESY spectrum of the complex with the modified residue revealed the interactions of the labeled residue both within the peptide and with the Fab fragment. A total of 122 distance restraints derived from the difference spectra enabled the calculation of the structure of the bound peptide. The peptide forms a 10-residue loop, while the two segments flanking this loop interact extensively with each other and possibly form anti-parallel β-strands. The loop conformation could be observed due to the unusual large size (17 residues) of the antigenic determinant recognized by 0.5β.  相似文献   

10.
“Mono-N-methyl scan” is a rational approach for the optimization of the peptide biological properties. N-Methylation of the –CONH– functionality is also a useful tool for discriminating solvent exposed from intramolecularly H-bonded secondary amide groups in peptides. We are currently extending this reaction to linear peptides based on Cα-tetrasubstituted α-amino acids. Following our study on the synthesis and conformation of the mono-N-methylated peptides from Cα-methylated residues, in this work we investigated the N-methylation reaction on homo-peptides to the pentamer level from the Cα-ethylated residue Cα,α-diethylglycine. Under the classical experimental conditions used, exclusively mono-N-methylation (on the N-terminal, acetylated residue) takes place, as unambiguously shown by mass spectrometry, 2D-NMR, and X-ray diffraction techniques. This backbone modification does not seem to involve any significant change in the peptide conformation in the crystalline state. Dedicated to the memory of Prof. Miroslav T. Leplawy (Technical University of Łodz, Poland), who performed the first synthesis of the extremely sterically demanding Cα,α-diethylglycine peptides.  相似文献   

11.
An SHV β-lactamase gene was amplified from a β-lactam resistant Klebsiella pneumoniae K-71 genomic DNA. After expression and purification, we demonstrated that peptide P1 could inhibit the hydrolysis activity of both TEM-1 and SHV β-lactamase in vitro. Three mutations were introduced into P1 in which the first residue S was replaced by F, the 18th residue V was mutated to Y, and the 15th residue Y was substituted with A, C, G, and R to obtain the mutants of P1-A, P1- C, P1-G, and P1-R, respectively. The mutant peptides were purified and their inhibitory constants against TEM-1 and SHV β-lactamase were determined. All these β-lactamase inhibitory peptides could inhibit the activity of both β-lactamases, while the mutant peptides showed stronger inhibitory activities against TEM-1 β-lactamase than against SHV β-lactamase. Inhibition data suggested that P1-A improved the β-lactamase inhibitory activity by over 3-fold compare to P1. When P1-A was incubated with K. pneumoniae K-71 in Luria-Bertani medium containing ampicillin, it showed a much stronger growth of inhibition ratio over P1. This study gives us a good candidate for development of novel β-lactamase inhibitors.  相似文献   

12.
The main component of senile plaques found in AD brain is amyloid β-peptide (Aβ), and the neurotoxicity and aggregation of Aβ are associated with the formation of β-sheet structure. Experimentally, beta sheet breaker (BSB) peptide fragment Leu-Pro-Phe-Phe-Asp (LPFFD) can combine with Aβ, which can inhibit the aggregation of Aβ. In order to explore why LPFFD can inhibit the formation of β-sheet conformation of Aβ at atomic level, first, molecular docking is performed to obtain the binding sites of LPFFD on the Aβ(1–42) (LPFFD/Aβ(1–42)), which is taken as the initial conformation for MD simulations. Then, MD simulations on LPFFD/Aβ(1–42) in water are carried out. The results demonstrate that LPFFD can inhibit the conformational transition from α-helix to β-sheet structure for the C-terminus of Aβ(1–42), which may be attributed to the hydrophobicity decreasing of C-terminus residues of Aβ(1–42) and formation probability decreasing of the salt bridge Asp23-Lys28 in the presence of LPFFD.  相似文献   

13.
We report here two sets of results on proline-containing linear peptides, one of which brings out the role of theβ-turn conformation in the structure of nascent collagen while the other points to the functional importance of the β-turn in calcium-binding proteins. Based on the data on peptides containing the -Pro-Gly-sequence, we had proposed and experimentally verified that theβ-turn conformation in these peptides is a structural requirement for the enzymic hydroxylation of the proline residues in the nascent (unhydroxylated) procollagen molecule. Our recent data, presented here, on the conformation of peptides containing both the -Pro-Gly- and -Gly-Pro-sequences reveal that while theβ-turn in the substrate molecule is required at the catalytic site of prolyl hydroxylase, the polyproline-II structure is necessary for effective binding at the active site of the enzyme. Thus, peptides containing either theβ-turn or the polyproline-II structure alone are found to act only as inhibitors while those with the polyproline-II followed byβ-turn serve as substrates of the enzyme. In another study, we have synthesized the two linear peptides: Boc-Pro-D-Ala-Ala-NHCH3 and Boc-Pro-Gly-Ala-NHCH3 each of which adopts, in solution, a structure with two consecutiveβ-turns, as judged from circular dichroism, infrared and nuclear magnetic resonance data. Drastic spectral changes are seen in these peptides on binding to Ca2+. Both the peptides show a distinct specificity to Ca2+ over Mg2+, Na+ and Li+. A conformational change in the peptides occurs on Ca2+ binding which brings together the carbonyl groups to coordinate with the metal ion. These results imply a functional role for theβ-turn in Ca2+ — binding proteins.  相似文献   

14.
l-Ala modified analogues of amyloid β-peptide residue 17-20 LVFF (-l-Leu-l-Val-l-Phe-l-Phe-) have been designed and synthesized to study their self-assembling propensity, the nature of intermolecular interactions and rationalize with short hydrophobic sequences in the middle of Aβ that have important role in the neuropathology of Alzheimer’s disease. The peptides sequences LVFA and LAFA have been adopted from the β-sheet region of non-amyloidogenic proteins (hemoglobin-like falvoprotein and ATP synthase C chain, respectively). All the reported peptides self-associate into amyloid-like fibrils which are readily stained with a physiological dye Congo red and exhibits green gold birefringence under polarized light. The solid state FTIR studies of the fibrils reveal that the reported peptides self-associate through intermolecular hydrogen bonds to form antiparallel β-sheet structure, which is also supported by molecular modeling studies. This result suggests that l-Ala analogous of Aβ17-20, LVFA and LAFA also have virtually identical aggregation behavior.  相似文献   

15.
The formation of 3-(1-piperidinyl)alanyl-containing peptides via phosphoryl β-elimination was identified from the application of Fmoc-Ser(PO3Bzl,H)-OH in peptide synthesis as shown by RP-HPLC, ES-MS and 31P-NMR analysis. An N α -deprotection study using the model substrates, Fmoc-Xxx(PO3Bzl,H)-Val-Glu(OtBu)-Resin (Xxx = Ser, Thr or Tyr) demonstrated that piperidine-mediated phosphoryl β-elimination occurred in the N-terminal Ser(PO3Bzl,H) residue at a ratio of 7% to the target phosphopeptide, and that this side reaction did not occur in the corresponding Thr(PO3Bzl,H)- or Tyr(PO3Bzl,H)- residues. The generation of 3-(1-piperidinyl)alanyl-peptides was also shown to be enhanced by the use of microwave radiation during Fmoc deprotection. An examination of alternative bases for the minimization of byproduct formation showed that cyclohexylamine, morpholine, piperazine and DBU gave complete suppression of β-elimination, with a 50% cyclohexylamine/DCM (v/v) deprotection protocol providing the crude peptide of highest purity. Piperidine-induced β-elimination was found only to occur in Ser(PO3Bzl,H) residues that were in the N-terminal position, since the addition of the next residue in the sequence rendered the phosphoseryl residue stable to multiple piperidine treatments. The application of the alternative N α -deprotection protocol using 50% cyclohexylamine/DCM (v/v) is therefore recommended for deprotection of the Fmoc group from the Fmoc-Ser(PO3Bzl,H) residue, with particular benefit anticipated for the synthesis of multiphosphoseryl peptides.  相似文献   

16.
The idea is advanced that under the extreme earth conditions for ~3.9 billions years ago, protein-based β-sheet molecular structures were the first self-propagating and information-processing biomolecules that evolved. The amyloid structure of these aggregates provided an effective protection against the harsh conditions known to decompose both polyribonucleotides and natively folded polypeptides. In the prebiotic amyloid world, both the replicative and informational functions were carried out by structurally stable β-sheet protein aggregates in a prion-like mode involving templated self-propagation and storage of information in the β-sheet conformation. In this amyloid (protein)-first, hybrid replication-metabolism view, the synthesis of RNA, and the evolvement of an RNA-protein world, were later, but necessary events for further biomolecular evolution to occur. I further argue that in our contemporary DNA↔RNA→protein world, the primordial β-conformation-based information system is preserved in the form of a cytoplasmic epigenetic memory.  相似文献   

17.
A marine bacterium (KMM 1364), identified as Bacillus pumilus, was isolated from the surface of ascidian Halocynthia aurantium. Structural analysis revealed that the strain KMM 1364 produced a mixture of lipopeptide surfactin analogs with major components with molecular masses of 1035, 1049, 1063, and 1077. The variation in molecular weight represents changes in the number of methylene groups in the lipid and/or peptide portions of the compounds. Structurally, these lipopeptides differ from surfactin in the substitution of the valine residue in position 4 by leucine, and have been isolated as two carboxy-terminal variants, with valine or isoleucine in position 7. As constituents of the lipophilic part of the peptides, only β-hydroxy-C15-, β-hydroxy-C16-, and a high amount of β-hydroxy-C17 fatty acid were determined.  相似文献   

18.
 To understand the dominant association of celiac disease (CD) with the presence of HLA-DQ(α1*0501, β1*0201), the peptide binding characteristics of this molecule were compared with that of the structurally similar, but non-CD-associated DQ(α1*0201, β1*0202) molecule. First, naturally processed peptides were acid-extracted from immuno-affinity-purified DQ molecules of both types. Both molecules contained the Ii-derived CLIP sequence and a particular fragment of the major histocompatibility complex (MHC) class I α chain. Use of truncated analogues of these two peptides in cell-free peptide binding assays indicated that identical peptide frames are used for binding to the two DQ2 molecules. Detailed substitution analysis of the MHC class I peptide revealed identical side chain requirements for the anchor residues at p6 and p7. At p1, p4, and p9, however, polar substitutions (such as N, Q, G, S, and T) were less well tolerated in the case of the DQ(α1*0201, β1*0202) molecule. The most striking difference between the two DQ molecules is the presence of an additional anchor residue at p3 for the DQ(α1*0201, β1*0202) molecule, whereas this residue was found not to be specifically involved in binding of peptides to DQ(α1*0501, β1*0201). Similar results were obtained applying substitution analysis of the CLIP sequence. Molecular modelling of the DQ2 proteins complexed with the MHC class I and CLIP peptide corresponds well with the binding data. The results suggest that both CLIP and the MHC class I peptide bind DQ(α1*0501, β1*0201) and DQ(α1*0201, β1*0202) in a DR-like fashion, following highly similar binding criteria. This detailed characterization of unique peptide binding properties of the CD-associated DQ(α1*0501, β1*0201) molecule should be helpful in the identification of CD-inducing epitopes. Received: 21 March 1997 / Revised: 28 May 1997  相似文献   

19.
We have studied the quaternary structure of α-crystallin in the presence of increasing concentrations of amphiphilic and neutral detergents using gel filtration, light-scattering, boundary and equilibrium sedimentation. We observed a continuous reduction of the molar mass of the polymeric α-crystallin on increasing the concentration of sodium dodecyl sulphate from 0.1 mM to 5 mM, ending up with the monomeric peptides. Dodecyltrimethylammonium bromide also disrupts the oligomeric structure of α-crystallin but the interaction appears to be cooperative: in the sharp transition region (for a 1 mg/ml protein solution) from 3 to 8 mM of the detergent, only the native protein and a mixture of monomeric and dimeric peptide-DTAB complexes can be observed. Concomitant studies of the circular dichroism in the far UV revealed a substantial decrease of the β-sheet and increase of the α-helix secondary structure. The latter can be related to the presence of amphiphilic polypeptide sequences in the constituent αA and αB peptides. These studies reveal for the first time a direct relation between changes in the secondary structure of the αA and αB peptides and the formation of the oligomeric α-crystallin structure: the binding of the amphiphilic detergent reduces the β-sheet content, induces the formation of α-helix secondary structure and reduces the tendency of the peptide to form large aggregates. The different mechanisms for reducing the oligomeric size by anionic and cationic detergents with identical apolar parts stresses the importance of charge interactions. Our findings support some aspects of the micelle model of α-crystallin and can be related to its chaperone activity. Accepted: 18 October 1996  相似文献   

20.
The peptide sequence YMESRADRKLAEVGRVYLFL, derived from 313-332 region of the αIIb, has been identified as a potent inhibitor of platelet aggregation and fibrinogen binding to αIIbβ3. More detailed studies have revealed that the Y313MESRADR320 sequence is the shortest octapeptide with strong inhibitory activity. This work provides insight of the solution conformation of these peptides, by performing extensive molecular dynamics simulations of 100 ns. The 8mer peptide has no stable conformation in water while the 20mer peptide retains a relative conformational stability. Analysis of side chain orientation of the RAD fragment revealed the synplanar arrangement of guanidinium and β-carboxylic groups providing a framework for explaining the similar biological activity of the two peptides, despite their differences in sequence and conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号