首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic soil fungi enhance ecosystem resilience to climate change   总被引:2,自引:0,他引:2       下载免费PDF全文
Substantial amounts of nutrients are lost from soils through leaching. These losses can be environmentally damaging, causing groundwater eutrophication and also comprise an economic burden in terms of lost agricultural production. More intense precipitation events caused by climate change will likely aggravate this problem. So far it is unresolved to which extent soil biota can make ecosystems more resilient to climate change and reduce nutrient leaching losses when rainfall intensity increases. In this study, we focused on arbuscular mycorrhizal (AM) fungi, common soil fungi that form symbiotic associations with most land plants and which increase plant nutrient uptake. We hypothesized that AM fungi mitigate nutrient losses following intensive precipitation events (higher amount of precipitation and rain events frequency). To test this, we manipulated the presence of AM fungi in model grassland communities subjected to two rainfall scenarios: moderate and high rainfall intensity. The total amount of nutrients lost through leaching increased substantially with higher rainfall intensity. The presence of AM fungi reduced phosphorus losses by 50% under both rainfall scenarios and nitrogen losses by 40% under high rainfall intensity. Thus, the presence of AM fungi enhanced the nutrient interception ability of soils, and AM fungi reduced the nutrient leaching risk when rainfall intensity increases. These findings are especially relevant in areas with high rainfall intensity (e.g., such as the tropics) and for ecosystems that will experience increased rainfall due to climate change. Overall, this work demonstrates that soil biota such as AM fungi can enhance ecosystem resilience and reduce the negative impact of increased precipitation on nutrient losses.  相似文献   

2.
Changes in rainfall availability will alter soil‐nutrient availability under a climate‐change scenario. However, studies have usually analyzed the effect of either drier or wetter soil conditions, despite the fact that both possibilities will coexist in many climatic regions of the world. Furthermore, its effect may vary across the different habitats of the ecosystem. We experimentally investigated the effect of three contrasting climatic scenarios on different carbon (C), nitrogen (N), and phosphorus (P) fractions in soil and microbial compartments among three characteristic habitats in a Mediterranean‐type ecosystem: forest, shrubland, and open areas. The climatic scenarios were dry summers, according to the 30% summer rainfall reduction projected in the Mediterranean; wet summer, simulating summer storms to reach the maximum historical records in the study area; and current climatic conditions (control). Sampling was replicated during two seasons (spring and summer) and 2 years. The climatic scenario did not affect the nutrient content in the litter layer. However, soil and microbial nutrients varied among seasons, habitats, and climatic scenarios. Soil‐nutrient fractions increased with lower soil‐moisture conditions (dry scenario and summer), whereas microbial nutrients increased under the wet summer scenario and spring. This pattern was consistent both studied years, although it was modulated by habitat, differences being lower with denser plant cover. Holm oak seedlings, used as live control of the experiment, tended to increase their N and P content (although not significantly) with water availability. Thus, the results support the idea that higher rainfall boosts microbial and plant‐nutrient uptake, and hence nutrient cycling. By contrast, a rainfall reduction leads to an accumulation of nutrients in the soil, increasing the risk of nutrient loss by leaching or erosion. These results show that the projected climate change will have significant effects on nutrient cycles, and therefore will have important implications on the ecosystem functioning.  相似文献   

3.
Potential impacts of global climate change on freshwater fisheries   总被引:3,自引:0,他引:3  
Despite uncertainty in all levels of analysis, recent and long-term changes in our climate point to the distinct possibility that greenhouse gas emissions have altered mean annual temperatures, precipitation and weather patterns. Modeling efforts that use doubled atmospheric CO2 scenarios predict a 1–7°C mean global temperature increase, regional changes in precipitation patterns and storm tracks, and the possibility of “surprises” or sudden irreversible regime shifts. The general effects of climate change on freshwater systems will likely be increased water temperatures, decreased dissolved oxygen levels, and the increased toxicity of pollutants. In lotic systems, altered hydrologic regimes and increased groundwater temperatures could affect the quality of fish habitat. In lentic systems, eutrophication may be exacerbated or offset, and stratification will likely become more pronounced and stronger. This could alter food webs and change habitat availability and quality. Fish physiology is inextricably linked to temperature, and fish have evolved to cope with specific hydrologic regimes and habitat niches. Therefore, their physiology and life histories will be affected by alterations induced by climate change. Fish communities may change as range shifts will likely occur on a species level, not a community level; this will add novel biotic pressures to aquatic communities. Genetic change is also possible and is the only biological option for fish that are unable to migrate or acclimate. Endemic species, species in fragmented habitats, or those in east–west oriented systems will be less able to follow changing thermal isolines over time. Artisanal, commercial, and recreational fisheries worldwide depend upon freshwater fishes. Impacted fisheries may make it difficult for developing countries to meet their food demand, and developed countries may experience economic losses. As it strengthens over time, global climate change will become a more powerful stressor for fish living in natural or artificial systems. Furthermore, human response to climate change (e.g., increased water diversion) will exacerbate its already-detrimental effects. Model predictions indicate that global climate change will continue even if greenhouse gas emissions decrease or cease. Therefore, proactive management strategies such as removing other stressors from natural systems will be necessary to sustain our freshwater fisheries.  相似文献   

4.
An analysis using an artificial neural network model suggests that the tropical forests of north Queensland are highly sensitive to climate change within the range that is likely to occur in the next 50–100 years. The distribution and extent of environments suitable for 15 structural forest types were estimated, using the model, in 10 climate scenarios that include warming up to 1°C and altered precipitation from –10% to +20%. Large changes in the distribution of forest environments are predicted with even minor climate change. Increased precipitation favours some rainforest types, whereas decreased rainfall increases the area suitable for forests dominated by sclerophyllous genera such as Eucalyptus and Allocasuarina. Rainforest environments respond differentially to increased temperature. The area of lowland mesophyll vine forest environments increases with warming, whereas upland complex notophyll vine forest environments respond either positively or negatively to temperature, depending on precipitation. Highland rainforest environments (simple notophyll and simple microphyll vine fern forests and thickets), the habitat for many of the region’s endemic vertebrates, decrease by 50% with only a 1°C warming. Estimates of the stress to present forests resulting from spatial shifts of forest environments (assuming no change in the present forest distributions) indicate that several forest types would be highly stressed by a 1°C warming and most are sensitive to any change in rainfall. Most forests will experience climates in the near future that are more appropriate to some other structural forest type. Thus, the propensity for ecological change in the region is high and, in the long term, significant shifts in the extent and spatial distribution of forests are likely. A detailed spatial analysis of the sensitivity to climate change indicates that the strongest effects of climate change will be experienced at boundaries between forest classes and in ecotonal communities between rainforest and open woodland.  相似文献   

5.
The vulnerability and adaptation of major agricultural crops to various soils in north‐eastern Austria under a changing climate were investigated. The CERES crop model for winter wheat and the CROPGRO model for soybean were validated for the agrometeorological conditions in the selected region. The simulated winter wheat and soybean yields in most cases agreed with the measured data. Several incremental and transient global circulation model (GCM) climate change scenarios were created and used in the study. In these scenarios, annual temperatures in the selected region are expected to rise between 0.9 and 4.8 °C from the 2020s to the 2080s. The results show that warming will decrease the crop‐growing duration of the selected crops. For winter wheat, a gradual increase in air temperature resulted in a yield decrease. Incremental warming, especially in combination with an increase in precipitation, leads to higher soybean yield. A drier climate will reduce soybean yield, especially on soils with low water storage capacity. All transient GCM climate change scenarios for the 21st century, including the adjustment for only air temperature, precipitation and solar radiation, projected reductions of winter wheat yield. However, when the direct effect of increased levels of CO2 concentration was assumed, all GCM climate change scenarios projected an increase in winter wheat yield in the region. The increase in simulated soybean yield for the 21st century was primarily because of the positive impact of warming and especially of the beneficial influence of the direct CO2 effect. Changes in climate variability were found to affect winter wheat and soybean yield in various ways. Results from the adaptation assessments suggest that changes in sowing date, winter wheat and soybean cultivar selection could significantly affect crop production in the 21st century.  相似文献   

6.
Over the past few decades, land-use and climate change have led to substantial range contractions and species extinctions. Even more dramatic changes to global land cover are projected for this century. We used the Millennium Ecosystem Assessment scenarios to evaluate the exposure of all 8,750 land bird species to projected land-cover changes due to climate and land-use change. For this first baseline assessment, we assumed stationary geographic ranges that may overestimate actual losses in geographic range. Even under environmentally benign scenarios, at least 400 species are projected to suffer >50% range reductions by the year 2050 (over 900 by the year 2100). Although expected climate change effects at high latitudes are significant, species most at risk are predominantly narrow-ranged and endemic to the tropics, where projected range contractions are driven by anthropogenic land conversions. Most of these species are currently not recognized as imperiled. The causes, magnitude and geographic patterns of potential range loss vary across socioeconomic scenarios, but all scenarios (even the most environmentally benign ones) result in large declines of many species. Whereas climate change will severely affect biodiversity, in the near future, land-use change in tropical countries may lead to yet greater species loss. A vastly expanded reserve network in the tropics, coupled with more ambitious goals to reduce climate change, will be needed to minimize global extinctions.  相似文献   

7.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

8.
Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species.  相似文献   

9.
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.  相似文献   

10.
Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt‐fed streams (n = 6) in the Kamikochi region of the northern Japanese Alps (April–December 2017). Macroinvertebrate abundance, species richness, and diversity were not significantly different between the two stream types. Community structure, however, was different between groundwater and snowmelt‐fed streams with macroinvertebrate taxa specialized for the environmental conditions present in each system. Temporal variation in the abundance, species richness, and diversity of macroinvertebrate communities was also significantly different between groundwater and snowmelt streams over the study period, with snowmelt streams exhibiting far higher levels of variation. Two snowmelt streams considered perennial proved to be intermittent with periodic drying of the streambed, but the macroinvertebrates in these systems rebounded rapidly after flows resumed with no reduction in taxonomic diversity. These same streams, nevertheless, showed a major reduction in diversity and abundance following periods of high flow, indicating floods rather than periodic drying was a major driver of community structure. This conclusion was also supported from functional analyses, which showed that the more variable snowmelt streams were characterized by taxa with resistant, rather than resilient, life‐history traits. The findings demonstrate the potential for significant turnover in species composition with changing environmental conditions in Japanese alpine stream systems, with groundwater‐fed streams potentially more resilient to future changes in comparison to snowmelt‐fed streams.  相似文献   

11.
Climate change is expected to affect the high latitudes first and most severely, rendering Antarctica one of the most significant baseline environments for the study of global climate change. The indirect effects of climate warming, including changes to the availability of key environmental resources, such as water and nutrients, are likely to have a greater impact upon continental Antarctic terrestrial ecosystems than the effects of fluctuations in temperature alone. To investigate the likely impacts of a wetter climate on Antarctic terrestrial communities a multiseason, manipulative field experiment was conducted in the floristically important Windmill Islands region of East Antarctica. Four cryptogamic communities (pure bryophyte, moribund bryophyte, crustose and fructicose lichen‐dominated) received increased water and/or nutrient additions over two consecutive summer seasons. The increased water approximated an 18% increase in snow melt days (0.2°C increase in temperature), while the nutrient addition of 3.5 g N m?2 yr?1 was within the range of soil N in the vicinity. A range of physiological and biochemical measurements were conducted in order to quantify the community response. While an overall increase in productivity in response to water and nutrient additions was observed, productivity appeared to respond more strongly to nutrient additions than to water additions. Pure bryophyte communities, and lichen communities dominated by the genus Usnea, showed stronger positive responses to nutrient additions, identifying some communities that may be better able to adapt and prosper under the ameliorating conditions associated with a warmer, wetter future climate. Under such a climate, productivity is overall likely to increase but some cryptogamic communities are likely to thrive more than others. Regeneration of moribund bryophytes appears likely only if a future moisture regime creates consistently moist conditions.  相似文献   

12.
Coastal Upland Swamp communities are characterized by high biodiversity and provide habitat for a range of threatened flora and fauna. In this research project, we are monitoring swamp vegetation dynamics over decadal timescales and relating observed changes to environmental factors. We have also modelled potential effects of climate change on swamp distributions. We found that swamp communities are spatially dynamic, both internally and in relation to the woodland matrix. Transitions between communities depended on initial states. In addition, these water‐dependent communities appeared highly sensitive to projected climate change and their ‘Endangered’ status makes their active management a high priority. Improved understanding of dynamics at the community and landscape scale facilitates horizon scanning and improves our capacity to plan effective management interventions now and under future management and climate change scenarios.  相似文献   

13.
There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options – planting date, fertilizer use and cultivar choice – using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near‐ and long‐term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid‐December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010–2039 and 2040–2069 and by 20% for 2070–2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070–2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change.  相似文献   

14.
We projected effects of mid‐21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Omykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature‐dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid‐21st century, the effects of climate change are projected to be mixed. Fish in warm‐region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid‐21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year‐to‐year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.  相似文献   

15.
筑坝河流磷素的迁移转化及其富营养化特征   总被引:7,自引:0,他引:7  
鲍林林  李叙勇  苏静君 《生态学报》2017,37(14):4663-4670
人类活动过量营养物质输入是导致河流富营养化的主要原因,而河道过度的人为调控则进一步复杂化了河流的营养状态变化。闸坝是河流人为调控的重要工程措施之一,提高水资源利用效率的同时严重干扰了河流自然的生物地球化学循环,产生诸多负面生态环境效应。磷素的迁移转化对河流的营养限制作用受到越来越多的关注,国内外已有研究在筑坝河流磷的富营养化特征方面,已经取得了较为深刻的认识:水库闸坝建设滞留大量磷素,导致河流水体磷含量升高、营养物质比例变化,沉积物储存过量磷素形成的内源释放威胁,以及进一步浮游植物和有害藻类的生长响应等,使得筑坝河流的富营养化生态风险升高;在此基础上,也提出了根据降雨分配和闸控库区储水,合理设置闸坝泄流方式,以改善筑坝河流富营养化生态风险的重要管理思路。对于闸坝调控作用与水体富营养化的定量关系还有待进一步的探讨,而且随着河流资源开发和人为调控力度的增强,河流闸坝建设所产生的系列生态环境问题日益严峻,对此提出还需要系统研究的方向:闸坝调控作用下河流磷素的富营养化机制及其与氮、碳等元素的耦合作用,筑坝河流沉积物内源污染的综合管理,以及闸控景观河流的生态建设和修复等。  相似文献   

16.
In the Andean region of South America, understanding communities’ water perceptions is particularly important for water management as many rural communities must decide by themselves if and how they will protect their micro-watersheds and distribute their water. In this study we examine how Water User Associations in the Eastern Andes of Colombia perceive water scarcity and the relationship between this perception and observed climate, land use, and demographic changes. Results demonstrate a complex relationship between perceptions and observed changes. On the one hand, observed changes in land cover match perceptions of deforestation as the primary cause of increasing water scarcity. On the other hand, perceptions of climate driven changes in water availability are not reflected in observed precipitation data. Furthermore, water scarcity was perceived in regions where seasonal rainfall variability is higher but not in regions where annual rainfall is lower. We discuss how these results contribute to our understanding of adaptation to climate change and the implications of possible mismatches between environmental changes and local perceptions.  相似文献   

17.
Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050–2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype–environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.  相似文献   

18.
Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15‐year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021–2080 period by means of regional climate change models. Simple models based on early spring temperature and summer–autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15‐year period. However, their predictions for the 2021–2080 period diverged. Rainfall‐based models predicted a maintenance of fungal yield, whereas water balance‐based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer–autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century.  相似文献   

19.
Climate change is expected to alter the magnitude and variation of flow in streams and rivers, hence providing new conditions for riverine communities. We evaluated plant ecological responses to climate change by transplanting turfs of riparian vegetation to new elevations in the riparian zone, thus simulating expected changes in water‐level variation, and monitored the results over 6 years. Turfs moved to higher elevations decreased in biomass and increased in species richness, whereas turfs transplanted to lower elevations gained biomass but lost species. Transplanted plant communities responded slowly to the new hydrologic conditions. After 6 years, biomass of transplanted turfs was statistically indistinguishable from target level controls, but species richness and species composition of transplants were intermediate between original and target levels. By using projections of future stream flow according to IPCC climate change scenarios, we predict likely changes to riparian vegetation in boreal rivers. Climate‐driven hydrologic changes are predicted to result in narrower riparian zones along the studied Vindel River in northern Sweden towards the end of the 21st century. Present riparian plant communities are projected to be replaced by terrestrial communities at high elevations as a result of lower‐magnitude spring floods, and by amphibious or aquatic communities at low elevations as a result of higher autumn and winter flows. Changes to riparian vegetation may be larger in other boreal climate regions: snow melt fed spring floods are predicted to disappear in southern parts of the boreal zone, which would result in considerable loss of riparian habitat. Our study emphasizes the importance of long‐term ecological field experiments given that plant communities often respond slowly and in a nonlinear fashion to external pressures.  相似文献   

20.
Effect of warming and drought on grassland microbial communities   总被引:1,自引:0,他引:1  
The soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios. To this end, we surveyed the abundance, diversity and structure of microbial communities over a 2-year period from a long-term in situ warming experiment that experienced a moderate natural drought. We found the warming treatment and soil water budgets strongly influence bacterial population size and diversity. In normal precipitation years, the warming treatment significantly increased microbial population size 40–150% but decreased diversity and significantly changed the composition of the community when compared with the unwarmed controls. However during drought conditions, the warming treatment significantly reduced soil moisture thereby creating unfavorable growth conditions that led to a 50–80% reduction in the microbial population size when compared with the control. Warmed plots also saw an increase in species richness, diversity and evenness; however, community composition was unaffected suggesting that few phylotypes may be active under these stressful conditions. Our results indicate that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号