首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactoferrin Is the Major Deoxyribonuclease of Human Milk   总被引:1,自引:0,他引:1  
Lactoferrin is the major iron-transferring protein of human barrier fluids such as blood and milk. It is a polyfunctional protein capable of binding DNA exposed on the surface of various cells. Electrophoretically homogenous lactoferrin was prepared by sequential chromatography of human milk proteins on DEAE-cellulose, heparin-Sepharose, and Sepharose containing immobilized anti-lactoferrin antibodies. By subsequent chromatography on Blue Sepharose the resulting lactoferrin was fractionated into several subfractions with different affinity for the sorbent, and this was associated with separation of additional lactoferrin peaks with DNase activity from the main peak. By various techniques, in particular, by in situ testing the DNase activity of lactoferrin in a DNA-containing gel after SDS-electrophoresis, hydrolysis of DNA was for the first time shown to be an intrinsic property of lactoferrin. The substrate specificity of lactoferrin in hydrolysis of DNA was different from specificities of known human DNases. Hydrolysis of DNA was activated by bivalent metal ions and also by ATP and NAD. Unlike the main fraction of lactoferrin with the highest affinity for Blue Sepharose, all protein subfractions with DNase activity were cytotoxic and suppressed growth of human and mouse tumor cell lines.  相似文献   

2.
3.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

4.
Comparative antimicrobial activity of lactoferrins from various sources (native lactoferrin from Laprot, human hololactoferrin, recombinant human lactoferrin isolated from the cultural medium of permissive cell culture transfected using pseudoadenovirus nanostructure with the human lactoferrin gene, and native bovine lactoferrin) was studied to prove the possibility of their use for development of antimicrobial drugs. It was shown that all the substances were active against the Bacillus standard strains. The antibacterial activity was almost independent of the degree of saturation the lactoferrin molecules with Fe3+. The native human lactoferrin was more active than hololactoferrin against Candida when evaluated by the minimum inhibitory concentration (MIC). Fe(3+)-Non aturated recombinant human lactoferrin demonstrated the antimicrobial activity (by MIC) similar to that of the native human lactoferrin. The results showed that native and recombinant human lactoferrins might be used for the development of intravenous and intracavitary dosage forms, while the native bovine lactoferrin could be useful in development of oral drugs.  相似文献   

5.
A Mitra  Z Zhang 《Plant physiology》1994,106(3):977-981
A suspension tobacco (Nicotiana tabacum L.) cell line was transformed to express human lactoferrin, an iron-binding glycoprotein. The transgenic calli produced a protein that was significantly smaller than the full-length lactoferrin protein. Total protein extracts made from transgenic tobacco callus exhibited much higher antibacterial activity than commercially available purified lactoferrin as determined by the decrease of colony-forming units when tested with four phytopathogenic species of bacteria. Introduction of the lactoferrin gene in crop plants may provide resistance against phytopathogenic bacteria.  相似文献   

6.
Translocation of bacteria, primarily Gram-negative pathogenic flora, from the intestinal lumen into the circulatory system leads to sepsis. In newborns, and especially very low birth weight infants, sepsis is a major cause of morbidity and mortality. The results of recently conducted clinical trials suggest that lactoferrin, an iron-binding protein that is abundant in mammalian colostrum and milk, may be an effective agent in preventing sepsis in newborns. However, despite numerous basic studies on lactoferrin, very little is known about how metal saturation of this protein affects a host’s health. Therefore, the main objective of this study was to elucidate how iron-depleted, iron-saturated, and manganese-saturated forms of lactoferrin regulate intestinal barrier function via interactions with epithelial cells and macrophages. For these studies, a human intestinal epithelial cell line, Caco-2, was used. In this model, none of the tested lactoferrin forms induced higher levels of apoptosis or necrosis. There was also no change in the production of tight junction proteins regardless of lactoferrin metal saturation status. None of the tested forms induced a pro-inflammatory response in Caco-2 cells or in macrophages either. However, the various lactoferrin forms did effectively inhibit the pro-inflammatory response in macrophages that were activated with lipopolysaccharide with the most potent effect observed for apolactoferrin. Lactoferrin that was not bound to its cognate receptor was able to bind and neutralize lipopolysaccharide. Lactoferrin was also able to neutralize microbial-derived antigens, thereby potentially reducing their pro-inflammatory effect. Therefore, we hypothesize that lactoferrin supplementation is a relevant strategy for preventing sepsis.  相似文献   

7.
We have determined that the major iron-binding and DNA-binding protein in porcine colostral whey is lactoferrin. This lactoferrin was purified to homogeneity in one chromatographic step using immobilized single-stranded DNA-agarose. Although different in chromatographic behavior from human lactoferrin, the porcine lactoferrin purified in this manner was shown to be homogeneous by high-performance ion-exchange chromatography (Mono-S), immobilized metal ion (Cu2+) affinity chromatography, size-exclusion chromatography (TSK-4000SW), and reverse-phase (phenyl) chromatography. Electrophoresis on SDS-polyacrylamide gradient (10-20%) gels under reducing conditions showed the purified lactoferrin to be a single protein (silver-stained) of 78 kDa. Apolactoferrin purified in this manner bound iron and displayed a UV/VIS absorption spectrum indistinguishable from that of human lactoferrin. The molar absorption coefficient of hololactoferrin was 3.86 x 10(3) M-1 at 465 nm and 1.08 x 10(5) M-1 at 280 nm. Affinity elution analyses of the purified lactoferrin on immobilized DNA revealed that the affinity of this protein for DNA was independent of bound iron. Porcine lactoferrin was recognized by antibodies directed against human lactoferrin and bovine lactoferrin. The amino acid composition and N-terminal amino acid sequence analysis (30 residues) revealed a high degree of sequence homology with human, equine and bovine lactoferrin. These results demonstrate the effectiveness of immobilized DNA as a rapid and simple lactoferrin purification procedure and demonstrate the presence of a lactoferrin in porcine colostral whey with a high degree of sequence homology to human lactoferrin.  相似文献   

8.
9.
人乳铁蛋白基因克隆及细胞表达研究   总被引:22,自引:3,他引:22  
通过PCR法直接克隆了2.366kb的人乳铁蛋白基因cDNA序列及800bp的山羊β乳球蛋白基因5′ 端调控序列,并连接到表达载体pLNCX中。利用脂质体包裹含人乳铁蛋白基因cDNA的重组质粒pLNCXHLF,并导入到小鼠乳腺癌细胞株MA∕782中,G418及PCR筛选获得阳性单克隆细胞,增殖后,转染细胞利用海藻酸钠固定化包埋培养,经激素诱导,培养液上清通过Western印记检测证明,转染细胞表达并分泌出人乳铁蛋白,分子质量为34kDa;ELISA法测出,每升培养基(含105个细胞)重组蛋白最高表达量为65mg;抗菌实验表明,所获得的重组人乳铁蛋白具有抑制大肠杆菌生长的作用,而且比人乳铁蛋白标准品作用更强。 Abstract:In this paper,we directly cloned 2.366Kb cDNA sequence of human lactoferrin gene and 800bp 5′flank regulatory sequence of β/lactoglobulin gene from goat by PCR,then connected them with the expression vector pLNCX.The recombinant plasmid pLNCXHLF containing human lactoferrin gene cDNA was transfected into mice mammary tumor cell line MA/782 after liposome transinfection.Positive single clone cells were selected with G418 and by PCR.After proliferating,the transfected cells immobilized and cultured in soldium alginate were induced by hormone.The result of Western blotting analysis on cultured cell supernatant shows that transfected cells can express the exogenic gene and secrete hLF protein,whose MW is 34 KD.The highest amount detected by ELISA reached 65mg/l medium/105 cells.The result of antibacterial experiment indicates that the recombinant hLF protein has the effect of inhibiting E.coli proliferation;moreover,its activity is superior to the commercial available hLF′s.  相似文献   

10.
Abstract Bovine lactoferrin binds to a 60 kDa heat shock protein of Helicobacter pylori . Binding ability was related to human immunoglobulin G because bovine lactoferrin binding proteins were isolated by extraction of cell surface associated proteins with distilled water, applied on IgG-Sepharose and nickel sulphate chelate affinity chromatography. Binding was demonstrated by Western blot after purified protein was digested with α-chymotrypsin and incubated with peroxidase-labeled bovine lactoferrin. Binding was inhibited by bovine lactoferrin, lactose, rhamnose, galactose, and two iron-containing proteins, ferritin and haptoglobin. Helicobacter pylori binds ferritin and haptoglobin via charge or hydrophobic interactions because this binding was not inhibited by specific and various glycoproteins or carbohydrates. Carbohydrate moieties of bovine lactoferrin molecules seem to be involved in binding because glycoproteins with similar carbohydrate structures strongly inhibited binding. Scatchard plot analysis of the binding of peroxidase-labeled bovine lactoferrin to H. pylori cells yielded a k d 2.88 × 10−6 M. In addition, binding of H. pylori cells to bovine lactoferrin was enhanced when bacteria treated with pepsin or α-chymotrypsin after isolation from iron-restricted and iron-containing media.  相似文献   

11.
Transgenic Nicotiana tabacum cell lines were developed expressing the human lactoferrin gene driven by the oxidative stress-inducible peroxidase (SWPA2) promoter. Western blot analysis showed the accumulation of both the full-length human lactoferrin protein as well as a immuno-reactive truncated fragment. Accumulation of human lactoferrin as monitored by ELISA increased proportionally to cell growth and reached a maximal (up to 4.3% of total soluble proteins) at the stationary phase of growth. Protein extracts from transgenic tobacco cells exhibited antibacterial activity.  相似文献   

12.
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.  相似文献   

13.
14.
15.
16.
17.
18.
A cDNA fragment encoding human lactoferrin (hLF) linked to a plant microsomal retention signal peptide (SEKDEL) was stably integrated into the Solanum tuberosum genome by Agrobacterium tumefaciens-mediated leaf disk transformation methods. The lactoferrin gene was expressed under control of both the auxin-inducible manopine synthase (mas) P2 promoter and the cauliflower mosaic virus (CaMV) 35S tandem promoter. The presence of the hLF cDNA in the genome of regenerated transformed potato plants was detected by polymerase chain reaction amplification methods. Full-length hLF protein was identified by immunoblot analysis in tuber tissue extracts from the transformed plants by immunoblot analysis. The hLF produced in transgenic plant tissues migrated during polyacrylamide gel electrophoresis as a single band with an approximate molecular mass equal to hLF. Auxin activation of the mas P2 promoter increased lactoferrin expression levels in transformed tuber and leaf tissues to approximately 0.1% of total soluble plant protein. Antimicrobial activity against four different human pathogenic bacterial strains was detected in extracts of lactoferrin-containing potato tuber tissues. This is the first report of synthesis of full length, biologically active hLF in edible plants.  相似文献   

19.
Lactoferrin, an iron-binding glycoprotein, kills bacteria and modulates inflammatory and immune responses. Presence of lactoferrin in the female reproductive tract suggests that the protein may be part of the mucosal immune system and act as the first line of defense against pathogenic organisms. We have discovered that lactoferrin is a major estrogen-inducible protein in the uterus of immature mice and is up-regulated by physiological levels of estrogen during proestrous in mature mice. In the present study, we examined lactoferrin gene expression and its response to estrogen stimulation in the female reproductive tract of several strains of immature mouse, rat, and hamster. The lactoferrin expression in the cycling adult female rat was also evaluated. Lactoferrin gene polymorphism exists among the different mouse strains. In the three inbred mouse strains studied, lactoferrin gene expression is stimulated by estrogen in the immature uterus, although it is less robust than in the outbred CD-1 mouse. We found that the lactoferrin gene is constitutively expressed in the epithelium of the vagina and the isthmus oviduct; however, it is estrogen inducible in the uterus of immature mice and rats. Furthermore, lactoferrin is elevated in the uterine epithelium of the mature rat during the proestrous and estrous stages of the estrous cycle. Estrogen stimulation of lactoferrin gene expression in the reproductive tract of an immature hamster is limited to the vaginal epithelium. The present study demonstrates differential expression and estrogen responsiveness of the lactoferrin gene in different regions of the female rodent reproductive tract and variation among the rodent species studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号