首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
目的:获得IFITM1基因片段并构建真核表达质粒.方法:采用RT-PCR技术扩增IFITM1,将扩增产物连接至pcDNA3.1载体,对重组质粒进行测序验证,结果:构建了真核表达质粒pcDNA3.1-IFITM1,通过酶切、测序等方法验证完全正确.结论:成功构建了IFITM1基因的真核表达质粒,为下一步探讨IFITM1基因在子宫颈癌HeLa细胞中的作用提供了实验基础.  相似文献   

2.
外源基因的靶向细胞表达   总被引:1,自引:0,他引:1  
使外源基因在特定组织细胞中进行表达主要采用两方:一是使用靶向基因载体,这种载体可识别特定组织细胞膜上的一些分子,并与之结合,然后再将外源基因带入细胞中表达;另一种方式是使用组织细胞专一的启动子,来驱动外源基因在该细胞中的特异性表达。  相似文献   

3.
张颖  白雪帆等 《Virologica Sinica》2003,18(1):23-26,T001
应用PCR扩增RANTES-KDEL基因,鉴定后与真核表达载体pCMV-S/K连接,构建成HIV-1辅受体的配体,趋化因子RANTES和SDF-1的融合表达载体pCMV-R-K-S-K,酶切鉴定和测序证明成功构建了pCMV-R-K-S-K融合表达载体。脂质体介导pCMV-R-K-S-K转染HeLa细胞,间接免疫荧光证实了RANTES和SDF-1可高效表达于HeLa细胞。细胞表明构建的pCMV-R-K-S-K融合表达载体能在HeLa细胞中高效表达,可用于下一步的HIV-1感染实验。  相似文献   

4.
根据Genbank中发表的猪IgG Fc段基因及IBV S1基因序列,设计并合成引物。以猪肝组织总RNA为模扩增出猪IgG Fc基因,以含全长IBV M41 S基因的质粒为模板扩增出IBV S1基因,分别克隆至T载体。DNA测序表明,所获得的IBV S1基因大小为1.5 kb,IgG Fc大小为1kb,序列正确。将IBV S1与IgG Fc基因串连,插入含有人组织型纤维蛋白溶酶原激活物分泌信号肽序列(tPA)真核表达载体pcDNA3.1-tPA上,在HeLa细胞上进行瞬时融合表达。经免疫荧光和斑点杂交检测,表达产物同时具有IBV S1蛋白和IgG Fc活性。  相似文献   

5.
人IL-2/IFNα2b融合基因在肝癌细胞中靶向表达   总被引:5,自引:0,他引:5  
 根据细胞因子之间协同作用的特点,采用重组 D N A 技术设计并构建了人 I L 2 与 I F Nα融合基因,并用肝癌组织特异的 A F P增强子/ A L B启动子调控融合基因在肝癌细胞中的靶向表达.实验结果表明,克隆的 E A F P P A L B联合转录调控序列能调控细胞因子基因在 A F P阳性人肝癌细胞中靶向表达, I L 2/ I F Nα2b 融合基因的表达水平与感染肝癌细胞的 A F P表达水平呈正相关性.实验证明表达的融合蛋白具有 I L 2 和 I F N 两种生物学活性的细胞因子.这可能为肝癌基因治疗开辟新途径.  相似文献   

6.
pIRES2-EGFP-IL-1ra-Fcε真核表达载体的构建及鉴定   总被引:2,自引:0,他引:2  
采用RT-PCR方法从哮喘大鼠脾细胞中克隆IgE恒定区cDNA,同时从载体pBV220-IL-1ra中克隆IL-1ra基因.利用重叠延伸PCR技术构建IL-1ra-Fcε融合基因.将其克隆入真核表达载体pIRES2-EGFP,以脂质体法转染293T细胞,同时采用气管滴注方式滴注大鼠肺部.经Westernblot、RT-PCR及荧光显微镜观察此融合基因在293T细胞及大鼠肺组织中实现了表达,为过敏性哮喘基因治疗奠定了基础.  相似文献   

7.
真核基因的快速克隆及表达   总被引:3,自引:0,他引:3  
以细胞间隙连接蛋白基因Cx26作为目的基因,通过T-A载体介导,构建真核表达重组载体pcDNA3.1( ) /Cx26,重组表达载体转染人鼻咽癌细胞株HNE1,表达Cx26间隙连接蛋白。  相似文献   

8.
制备了工程化靶向融合蛋白XE-TNFαm2。其中,XE为HIV/SIV辅助受体CXCR4的第二胞外域。TNFαm2是经突变改型的TNFα,其毒副作用已降低18倍,己用于临床治疗恶性肿瘤。本研究所用的整合有HIV的标准细胞株J-Lat Tat-GFP(H2/9855),为美国NIH艾滋病试剂中心所赠送。其中,一个经缺失突变后的HIV被整合在Jurkat细胞的染色体上,成为5’LTR-Tat-GFP-3’LTR。不同剂量的XE-TNFαm2加于一定量的JurkatH2/9855细胞后,流式细胞仪检测结果表明,荧光蛋白的表达量随着处理时间的延续而增加,并有XE-TNFαm2剂量的依赖关系。这一结果表明,XE-TNFαm2可强力激活潜伏于细胞染色体中的HIV,使之重新繁殖起来。鉴于己有的研究表明,XE-TNFαm2可杀灭受HIV/SIV感染的细胞。据此,当重新繁殖的HIV开始出芽时,其gp120必然出现在宿主细胞表面,且此gp120必然被XE-TNFαm2中的XE所结合,并其TNFαm2的杀伤信号将转导进入细胞。这样,这些宿主细胞将被杀灭。细胞的死亡导致未成熟HIV繁殖的中止。最后,在重新繁殖且成熟起来的HIV导致细胞破碎并释放出细胞之前,细胞内尚无感染力的未成熟HIV将同死亡的宿主细胞一起被清除。  相似文献   

9.
构建斑马鱼p53基因的真核表达系统,为下一步p53体内、外功能研究,以及为斑马鱼作为抗肿瘤药物筛选模型的构建和应用奠定基础。采用RT-PCR法从斑马鱼胚胎中扩增获得p53基因编码区,定向克隆到真核表达载pcDNA3.1上,构建真核表达质粒pcDNA3.1/his-p53,在起始密码前加入增强翻译的Kozak序列,并在终止密码前引入组氨酸标签便于检测和纯化,脂质体介导质粒转染HeLa细胞,RT-PCR和Western blotting检测基因表达情况。结果表明,成功构建了斑马鱼p53真核表达载体,RT-PCR扩增出1 100 bp的转录产物,表达产物能被抗his单克隆抗体特异性识别,Western blotting呈现53 kD左右单一条带。斑马鱼p53蛋白在HeLa细胞中成功表达。  相似文献   

10.
MicroRNAs(miRNAs)是一类约20~25nt的小分子核苷酸,在细胞内的多种生物学过程,如细胞增殖、凋亡、生长、分化和代谢等过程中具有重要的功能。已知miR-27在脂肪细胞和肌肉细胞的发育过程中起了重要作用,其在神经细胞中的表达调节至今仍不清楚。在本研究中,通过miRBase和TargetScan数据库分析了miR-27的靶基因,构建了miR-27的真核表达载体,改造了萤火虫荧光素酶和海肾荧光素酶报告载体,将miR-27的靶基因Bmi1的3′-UTR融合到报告载体中,转染神经胶质瘤细胞,利用双荧光素酶检测系统分析荧光素酶的活性。研究发现miR-27a和miR-27b共同的靶基因主要调节发育过程。MiR-27真核表达载体能产生成熟态的miR-27。MiR-27a、miR-27b或miR-27a和miR-27b联合与Bmi1的3′-UTR的正义序列共转染U343细胞能明显降低萤火虫荧光素酶的活性(分别P0.05,P0.05,P0.01),这提示了Bmi1可能为miR-27的靶基因。  相似文献   

11.
DCs (dendritic cells) are the strongest professional APCs (antigen-presenting cells) to initiate immune responses against pathogens, but they are usually incompetent in initiating efficient immune responses in the progress of solid tumours. We have shown that Notch signalling plays a pivotal role in DC-dependent anti-tumour immunity. Compared with the control DCs, OP9-DL1 (Delta-like1) cell co-cultured DCs gained increased tumour suppression activity when inoculated together with tumour cells. This was probably due to the activation of Notch signalling in DCs enhancing their ability to evoke anti-tumour immune responses in solid tumours. Indeed, the OP9-DL1 cell co-cultured DCs expressed higher levels of MHC I, MHC II, CXCR4 (CXC chemokine receptor 4), CCR7 (CC chemokine receptor 7), IL-6 (interleukin 6), IL-12 and TNFα (tumour necrosis factor α), and a lower level of IL-10 than control DCs, resulting in more efficient DC migration and T-cell activation in vivo and in vitro. T-cells stimulated by OP9-DL1 cells co-cultured DCs more efficiently; and were cytotoxic against tumour cells, in contrast with control DCs. These results indicated that up-regulation of Notch signalling in DCs by co-culturing with OP9-DL1 cells enhances DC-dependent anti-tumour immune reactions, making the Notch signalling pathway a target for the establishment of the DC-based anti-tumour immunotherapies.  相似文献   

12.
Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK–DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis.  相似文献   

13.
A rapidly growing body of evidence highlighted that histamine, a small biogenic amine, is implicated in the regulation of DC (dendritic cell) functions. It is well established that DCs represent the most potent antigen-presenting cells of the body, linking innate and acquired immunity and regulating the outcome of immune responses. Signals, associated with ongoing inflammation and uptake of foreign antigens, promote maturation of DCs and activation of T-cell responses in secondary lymphatic organs. These bone marrow-derived cells patrol continuously all over the body. During their persistent migration, several mediators may influence the behaviour and functions of DCs. Histamine, produced by mast cells, basophils or DCs themselves, may have an important role in the life cycle of DCs. From the differentiation, through their never-ending circulation, until the induction of T-cell response, histamine is present and influences the life cycle of DCs. Here, we summarize recent progress in histamine research with respect to DC functions. We also point out some controversial aspects of histamine action on DCs.  相似文献   

14.
15.
Summary The advent of highly active antiretroviral therapy (HAART) was once perceived to have transformed deadly HIV/AIDS into a treatable, chronic infectious disease. However, mounting evidence now suggests that the prevalence of multi-drug resistant HIV (MDR-HIV) infection is steadily rising among newly infected individuals in the HAART-experienced countries, raising a concern for a future outbreak of MDR-HIV/AIDS. Our global fight against AIDS must include sustained effort to search and discover a new therapeutic modality for HIV infection. Of plausible viral targets explored to date, HIV gene-targeting approach has not yet seen a considerable success in vivo. The pursuit of anti-HIV gene intervention should include the identification of critical gene targets as well as the optimization of biomolecules that can effectively interact with the intended targets. Using unmodified peptide nucleic acids (PNA) as a biomolecular tool, we discovered a potentially critical HIV gene segment within gag-pol encoding gene. Antisense PNA targeting this specific region effectively disrupted a translation of HIV gag-pol mRNA, abolishing the virion production from chronically HIV-infected cells. This exemplifies the possibility that epigenic HIV inhibitors may be developed in the coming years, if emerging novel technologies permit sufficient and stable in vivo delivery of PNA or other similarly effective biomolecules.  相似文献   

16.
Summary The advent of highly active antiretroviral therapy (HAART) was once perceived to have transformed deadly HIV/AIDS into a treatable, chronic infectious disease. However, mounting evidence now suggests that the prevalence of multi-drug resistant HIV (MDR-HIV) infection is steadily rising among newly infected individuals in the HAART-experienced countries, raising a concern for a future outbreak of MDR-HIV/AIDS. Our global fight against AIDS must include sustained effort to search and discover a new therapeutic modality for HIV infection. Of plausible viral targets explored to date, HIV gene-targeting approach has not yet seen a considerable success in vivo. The pursuit of anti-HIV gene intervention should include the identification of critical gene targets as well as the optimization of biomolecules that can effectively interact with the intended targets. Using unmodified peptide nucleic acids (PNA) as a biomolecular tool, we discovered a potentially critical HIV gene segment within gag-pol encoding gene. Antisense PNA targeting this specific region effectively disrupted a translation of HIV gag-pol mRNA, abolishing the virion production from chronically HIV-infected cells. This exemplifies the possibility that epigenic HIV inhibitors may be developed in the coming years, if emerging novel technologies permit sufficient and stable in vivo delivery of PNA or other similarly effective biomolecules.  相似文献   

17.
The advent of highly active antiretroviral therapy (HAART) was once perceived to havetransformed deadly HIV/AIDS into a treatable, chronic infectious disease. However, mountingevidence now suggests that the prevalence of multi-drug resistant HIV (MDR-HIV) infection issteadily rising among newly infected individuals in the HAART-experienced countries, raising aconcern for a future outbreak of MDR-HIV/AIDS. Our global fight against AIDS must include sustainedeffort to search and discover a new therapeutic modality for HIV infection. Of plausible viraltargets explored to date, HIV gene-targeting approach has not yet seen a considerable success invivo. The pursuit of anti-HIV gene intervention should include the identification of critical genetargets as well as the optimization of biomolecules that can effectively interact with theintended targets. Using unmodified peptide nucleic acids (PNA) as a biomolecular tool, we discovereda potentially critical HIV gene segment within gag-polencoding gene. Antisense PNA targetingthis specific region effectively disrupted a translation of HIV gag-polmRNA, abolishing thevirion production from chronically HIV-infected cells. This exemplifies the possibility that epigenic HIV inhibitors may be developed in the coming years, if emerging novel technologies permitsufficient and stable in vivo delivery of PNA or other similarly effective biomolecules.  相似文献   

18.
Summary After intravenous injection of horseradish peroxidase (HRP)-anti-HRP complexes in 21-day-old rats, complex trapping occurs on reticulum cells, forming the stroma of primary follicles of spleens. After intravenous injection of the same complexes in young adult rats (48 days old), trapping occurs on characteristic follicular dendritic cells (FDCs) located in well-developed germinal centers. These results strongly suggest that the follicular dendritic cell originates from a reticulum cell.Abbreviations FDC follicular dendritic cell - FRC fibroblastic reticulum cells - HRP horseradish peroxidase - RC reticulum cell  相似文献   

19.
Non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. Lung cancer is the most frequent non-AIDS-defining malignancies in HIV-infected patients. The mechanism of the increased risk for lung cancer in HIV-1 patients is poorly understood. HIV-1 Nef protein has been suggested to be one of the key players in HIV-related lung disease. In here, we showed the involvement of Nef protein in cell modifications such as fibroblasts (IMR-90) and normal (BEAS-2B) or cancerous (A549) epithelial cells. We demonstrated that Nef protein reprograms initial stages of lung cancer (e.g. changes in the metabolism, improved cell survival and invasion, increase the angiogenesis factor VEGF). Additionally, we showed that Nef is provoking a global decrease of mature miRNA and a decrease of DICER1 and AGO expression in lung cells. MiRNAs play a crucial role in cell signaling and homeostasis, functioning as oncogenes or tumor suppressors, and their dysregulation can contribute to the tumorigenic process. These results showed that HIV-1 Nef protein is directly involved in preventing cell death and contributes to tumor progression.  相似文献   

20.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号