首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope–localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside–in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.  相似文献   

2.
A structural analysis of cells that contained the interferon-alpha-induced lupus inclusions (LI) was performed using a high-voltage electron microscope to determine the exact cellular location of LI and their association with normal cell organelles. LI were induced in the human B lymphoblastoid cell line, Daudi, by culturing with the pure recombinant human leukocyte interferon, IFLrA. Just prior to harvesting, a portion of the cells was treated with monensin to selectively swell the Golgi apparatus, and thereby simplify their identification using the electron microscope. Organellar associations between LI and the outer nuclear envelope and Golgi apparatus were identified in stereopairs of 1-micron sections prepared from both cells that were not treated with monensin and those that were treated with monensin. Serial 0.25-micron sections of the monensin-treated cells were prepared, and seven arbitrarily chosen cells were examined. Each of these cells contained a single LI, and it formed throughout an endoplasmic-reticulum region that made contact with both the outer nuclear envelope and the Golgi vesicles. Reconstruction of a cell by computer from the digitized negatives of serial sections clearly illustrated these relationships. This study reports the first determination of the association between LI and the Golgi apparatus. It also identifies the presence of only one LI in every cell, and the routine association of the LI with both the outer nuclear envelope and the Golgi apparatus. The unique cell location of LI formation suggests their functioning in membrane biogenesis, the trafficking of proteins to the plasma membrane or to cytoplasmic vesicles, or the processing of proteins for secretion.  相似文献   

3.
Summary Electron microscopic examination of a variety of rapidly growing or differentiating mammalian and avian cells suggests that many of the Golgi vesicles and saccules arise directly from the outer nuclear membrane. Evidence for this interpretation includes: (1) the presence of a continuum of vesicles which appears to originate from the outer nuclear membrane and to enlarge gradually into saccules in the region of the Golgi membrane complex; (2) the absence of ribosomes on the nuclear blebs and the vesicles formed in these regions along the nuclear envelope; (3) the presence of active nuclear vesiculation near the Golgi region in cells essentially devoid of rough and/or smooth endoplasmic reticulum, and (4) the demonstration of peroxidase activity in the cisternae of the nuclear envelope and in vesicles extending in rows from the nuclear envelope to the Golgi complex. Supported by Research Grants HE 04061-09 (HEM), C-5315 and 1S01 FR-05109-01, Project 10 from the National Institutes of Health, Bethesda, Maryland.  相似文献   

4.
S. Singh  M. D. Lazzaro  B. Walles 《Protoplasma》1998,203(3-4):144-152
Summary Placental cells line the ovarian transmitting tract inLilium regale and produce exudates for secretion. Sections through the highly lobed nuclei of these cells reveal the presence of membrane profiles which form vesicles with varying dimensions in cross section. Computer reconstruction of the nucleus reveals that the vesicle profiles form a complex reticulum of tubular cisternae, which spans the whole nucleus, enclosing a maze of continuous lumen space. Connections between the vesicles and the inner nuclear envelope are visible at various points along the nuclear envelope. This complex network of tubules which constitutes the reticulum arises from the inner nuclear membrane. The nuclear reticulum dramatically increases the inner-envelope surface area, comprising 82% of the total membrane perimeter of inner nuclear envelope and nuclear reticulum. The inner nuclear envelope invaginates into the nucleus forming the nuclear reticulum and the outer nuclear envelope evaginates into the endoplasmic reticulum (ER), indicating that there is a continuity between the lumens of the nuclear reticulum and the ER. The nuclear reticulum is labelled with zinc iodide-osmium tetroxide, a staining pattern identical to that seen in the ER. Positive reaction to the zinc iodide-osmium tetroxide indicates that the nuclear reticulum is a site for Ca2+ deposition. The nuclear reticulum forms an extension of the endomembrane system which reaches deep into the nucleoplasm. The lumenal continuity of this system means that there is a channel for communication from the cytoplasm into the nucleoplasm, and that this channel sequesters calcium.Abbreviations ER endoplasmic reticulum - TEM transmission electron microscope - ZIO zinc iodide-osmium tetroxide  相似文献   

5.
The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.  相似文献   

6.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

7.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

8.
FINE STRUCTURE AND ORGANELLE ASSOCIATIONS IN BROWN ALGAE   总被引:6,自引:0,他引:6       下载免费PDF全文
The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells.  相似文献   

9.
Stepwise reassembly of the nuclear envelope at the end of mitosis   总被引:23,自引:8,他引:15       下载免费PDF全文
The nuclear envelope consists of three distinct membrane domains: the outer membrane with the bound ribosomes, the inner membrane with the bound lamina, and the pore membrane with the bound pore complexes. Using biochemical and morphological methods, we observed that the nuclear membranes of HeLa cells undergoing mitosis are disassembled in a domain-specific manner, i.e., integral membrane proteins representing the inner nuclear membrane (the lamin B receptor) and the nuclear pore membrane (gp210) are segregated into different populations of mitotic vesicles. At the completion of mitosis, the inner nuclear membrane- derived vesicles associate with chromatin first, beginning in anaphase, whereas the pore membranes and the lamina assemble later, during telophase and cytokinesis. Our data suggest that the ordered reassembly of the nuclear envelope is triggered by the early attachment of inner nuclear membrane-derived vesicles to the chromatin.  相似文献   

10.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

11.
Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission.  相似文献   

12.
Purified fractions of plasma membrane, Golgi apparatus, rough endoplasmic reticulum vesicles, nuclear envelope, and mitochondria were isolated from mouse liver and the distribution of H-2 histocompatibility antigens determined by indirect radioimmunoassay before and after membrane disruptive treatments. Fractions enriched in plasma membrane (surface membrane) revealed H-2 antigens in highest concentration; disruptive treatments were not necessary to reveal H-2 antigens with surface membranes. In contrast, internal membranes did not possess H-2 antigens which were accessible to antibody. Golgi apparatus fractions or some component of these fractions (e.g. secretory vesicles) possessed the antigens but in a latent form where accessibility was provided by simple rupture of the membrane vesicles. With endoplasmic reticulum, detergent solubilization of the membranes was required before H-2 antigen could be detected. Nuclear envelope preparations contained little or no demonstrable H-2 activity. These results were confirmed by several techniques including immunoprecipitation of labelled solubilized membrane components with anti-H-2 serum and subsequent analysis in SDS-PAGE.  相似文献   

13.
The reformation of functioning organelles at the end of mitosis presents a problem in vesicle targeting. Using extracts made from Xenopus laevis frog eggs, we have studied in vitro the vesicles that reform the nuclear envelope. In the in vitro assay, nuclear envelope growth is linear with time. Furthermore, the final surface area of the nuclear envelopes formed is directly dependent upon the amount of membrane vesicles added to the assay. Egg membrane vesicles could be fractionated into two populations, only one of which was competent for nuclear envelope assembly. We found that vesicles active in nuclear envelope assembly contained markers (BiP and alpha-glucosidase II) characteristic of the endoplasmic reticulum (ER), but that the majority of ER-derived vesicles do not contribute to nuclear envelope size. This functional distinction between nuclear vesicles and ER-derived vesicles implies that nuclear vesicles are unique and possess at least one factor required for envelope assembly that is lacking in other vesicles. Consistent with this, treatment of vesicles with trypsin destroyed their ability to form a nuclear envelope; electron microscopic studies indicate that the trypsin-sensitive proteins is required for vesicles to bind to chromatin. However, the protease-sensitive component(s) is resistant to treatments that disrupt protein-protein interactions, such as high salt, EDTA, or low ionic strength solutions. We propose that an integral membrane protein, or protein tightly associated with the membrane, is critical for nuclear vesicle targeting or function.  相似文献   

14.
尼罗罗非鱼精子形成中核内囊泡的释放   总被引:16,自引:3,他引:13  
尤永隆  林丹军 《动物学报》1998,44(3):257-263
通过透射电镜观察了尼罗罗非鱼的精子形成过程。尼罗罗非鱼精子细胞在成熟过程中,细胞核中出现由双层生物膜构成的囊泡。囊泡中均匀分布着电子密度低的物质。该囊泡逐渐从细胞核内排到细胞核外。在此过程中细胞核不但排出不参与染色质浓缩的物质,还将多余的核膜排出。进入袖套的囊泡可以留在精子的袖套中,而排到核前方和核侧面的囊泡继续以出芽的方式排出精子细胞。尼罗罗非鱼成熟精子的头部仅有染色质高度浓缩的细胞核。细胞核前  相似文献   

15.
Summary Mitotic divisions during sporangiogenous plasmodial cleavage inWoronina pythii were studied with transmission electron microscopy. We conclude that these nuclear divisions (e.g., transitional nuclear division, and sporangial mitoses) share basic similarities with the cruciform nuclear divisions inW. pythii and other plasmo-diophoraceous taxa. The major distinction appeared to be the absence of nucleoli during sporangial mitosis and the presence of nucleoli during cruciform nuclear division. The similarities were especially evident with regard to nuclear envelope breakdown and reformation. The mitotic divisions during formation of sporangia were centric, and closed with polar fenestrae, and characterized by the formation of intranuclear membranous vesicles. During metaphase, anaphase, and telophase, these vesicles appeard to bleb from the inner membrane of the original nuclear envelope and appeared to coalesce on the surface of the separating chromatin masses. By late telophase, the formation of new daughter nuclear envelopes was complete, and original nuclear envelope was fragmented. New observation pertinent to the mechanisms of mitosis in thePlasmodiophoromycetes include a evidence for the incorporation of membrane fragments of the original nuclear envelope into new daughter nuclear envelopes, and b the change in orientation of paired centrioles during sporangial mitosis.  相似文献   

16.
We have examined the effects of phospholipase C from Bacillus cereus on the extent of phospholipid hydrolysis in envelope membrane vesicles and in intact chloroplasts. When isolated envelope vesicles were incubated in presence of phospholipase C, phosphatidylcholine and phosphatidylglycerol, but not phosphatidylinositol, were totally converted into diacylglycerol if they were available to the enzyme (i.e., when the vesicles were sonicated in presence of phospholipase C). These experiments demonstrate that phospholipase C can be used to probe the availability of phosphatidylcholine and phosphatidylglycerol in the cytosolic leaflet of the outer envelope membrane from spinach chloroplasts. When isolated, purified, intact chloroplasts were incubated with low amounts of phospholipase C (0.3 U/mg chlorophyll) under very mild conditions (12 degrees C for 1 min), greater than 80% of phosphatidylcholine molecules and almost none of phosphatidylglycerol molecules were hydrolyzed. Since we have also demonstrated, by using several different methods (phase-contrast and electron microscopy, immunochemical and electrophoretic analyses) that isolated spinach chloroplasts, and especially their outer envelope membrane, remained intact after mild treatment with phospholipase C, we can conclude that there is a marked asymmetric distribution of phospholipids across the outer envelope membrane of spinach chloroplasts. Phosphatidylcholine, the major polar lipid of the outer envelope membrane, is almost entirely accessible from the cytosolic side of the membrane and therefore is probably localized in the outer leaflet of the outer envelope bilayer. On the contrary, phosphatidylglycerol, the major polar lipid in the inner envelope membrane and the thylakoids, is probably not accessible to phospholipase C from the cytosol and therefore is probably localized mostly in the inner leaflet of the outer envelope membrane and in the other chloroplast membranes.  相似文献   

17.
Summary Golgi apparatus in subapical regions of hyphae consist of paranuclear dictyosomes with 4–5 cisternae each. Transverse and tangential sections provide ultrastructural evidence for a three-dimensional architectural model of the Golgi apparatus and a stepwise mechanism for dictyosome multiplication. The dictyosomes are polarized, with progressive morphological and developmental differentiation of cisternae from the cis to the trans pole. Small membrane blebs and transition vesicles provide developmental continuity between the nuclear envelope and the adjacent dictyosome cisterna at the cis face. Cisternae are formed as fenestrated plates with extended tubular peripheries. The morphology of each cisterna depends on its position in the stack, consistent with a developmental gradient of progressive maturation and turnover of cisternae. Mature cisternae at the trans face are dissociated to produce spheroid and tubular vesicles. Evidence in support of a schematic sequence for increasing the numbers of dictyosomes comes from images of distinctive and unusual forms of Golgi apparatus in hyphal regions where nuclei and dictyosomes multiply, as follows: (a) The area of the nuclear envelope exhibiting forming-face activity next to a dictyosome expands, which in turn increases the size of cisternae subsequently assembled at the cis face of the dictyosome. (b) As subsequent large cisternae are formed and mature as they pass through the dictyosome, an entire dictyosome about twice normal size is built up. The number of cisternae per stack remains the same because of continuing turnover and loss of cisternae at the trans face, (c) This enlarged dictyosome becomes separated into two by a small region of the nuclear envelope next to the cis face that acquires polyribosomes and no longer generates transition vesicles, (d) As a consequence, assembly of new dictyosomes is physically separated into two adjacent regions, (e) As.the enlarged cisternae are lost to vesiculation at the trans pole, they are replaced by two separate stacks of cisternae with typical normal diameters, (f) The net result is two adjacent dictyosomes where one existed previously. Dictyosome multiplication is thus accomplished as part of the normal developmental turnover of cisternae, without interrupting the functioning of the Golgi apparatus as it continues to produce new secretory vesicles from mature cisternae at the trans face. Coordination of Golgi apparatus multiplication with nuclear division ensures that each daughter nucleus receives a complement of paranuclear dictyosomes.  相似文献   

18.
Summary Electron microscopic investigations show the scale subunits of the walls ofSorodiplophrys stercorea to be produced by the Golgi apparatus. Their chief monosaccharide subunit is identified tentatively as arabinose. Membrane flow involving the nuclear envelope, endoplasmic reticulum, Golgi apparatus, Golgi vesicles, plasmalemma, and possibly prominent refractive bodies composed of membranes is suggested. Cytochemical data supporting ultrastructural evidence concerning the sites of scale and membrane biogenesis are presented.  相似文献   

19.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

20.
Summary We have studied the sites of synthesis, assembly, and secretion of apoVLDL-II, a major apoprotein in very low density lipoproteins (VLDL), in the cockerel liver by immunoelectron microscopy. In the liver of the estrogen-treated cockerel, apoVLDL-II reaction products were localized in the cisternae of the nuclear envelope and the rough endoplasmic reticulum (RER). Such products were not observed in the smooth endoplasmic reticulum (SER). ApoVLDL-II reaction products were also located on the surface of lipid particles in the Golgi apparatus and secretory vesicles. Such lipid particles were not detected in the RER or SER. Some secretory vesicles containing the reaction products were seen during the process of fusion with the plasma membrane. Such fusion took place against the plasma membrane lining the space of Disse as well as the intercellular spaces. Reaction products also occurred in the sinusoids. These observations are compatible with the following sequence of events in the synthesis, assembly and secretion of apoproteins in VLDL in the cockerel liver: ApoVLDL-II is synthesized on bound ribosomes attached to the nuclear envelope and RER, and is discharged into their cisternae. The protein is probably transported to the Golgi apparatus where the assembly of this protein and its lipid components probably takes place. Secretory vesicles derived from the Golgi apparatus carry the VLDL particles to the plasma membrane where secretion of these particles takes place by exocytosis, and the VLDL are discharged into the sinusoid via both the space of Disse and intercellular spaces.This work was supported by Grants 78-1102 from the American Heart Association, and HL-16512 from the NIH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号