首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The fine structure of the Wolffian duct and alterations that occur with the differentiation of the epididymis have been studied in fetal rats ranging in length from 5 to 22 mm (12 to 19 days gestation). Contents of the columnar Wolffian duct cells include basal and perinuclear granular endoplasmic reticulum, sparse apical agranular endoplasmic reticulum, elongate mitochondria, and a small Golgi complex. Large membrane-bounded dense bodies contain cellular organelles and may represent parts of degenerating cells ingested by phagocytosis. During the development of the epididymis from the Wolffian duct in older fetuses, intracytoplasmic confronting cisternae of the granular endoplasmic reticulum become numerous, and the agranular reticulum in the apical part of the cell increases moderately in abundance. Concomitantly, the apical cell surface is modified. Many microvilli are formed, indentations of the plasma membrane appear between the microvilli, and the number of coated vesicles in the apical cytoplasm increases. These changes closely follow the onset of androgen secretion by the fetal testis, and it is suggested that they may occur in response to androgen. The relation of these differentiations to known adult functions of the epididymis is discussed.This study was supported by a research grant from the American Cancer Society (E-500), Program Project HD-02282 of the National Institutes of Health, and Health Sciences Advancement Award FR-02084 from the National Institutes of Health. The author is the recipient of a Research Career Development Award from the National Institute of General Medical Sciences. He wishes to acknowledge the technical assistance of Mrs. Heather Taylor.  相似文献   

2.
N. Rigaudière 《Steroids》1981,38(2):185-194
Testosterone (17β -hydroxy-4-androsten-3-one ; T) and dihydrotestosterone (17β -hydroxy-5 α -androstan-3-one ; DHT) concentrations were determined by radioimmunoassay in different fetal tissues taken from male guinea-pigs. Androgen concentrations were maximal in the components of the Wolffian duct (vas deferens, epididymis, seminal vesicle) and the urogenital sinus (urogenital tubercle, prostate) when these tissues are differentiating between days 28 and 36 (T = 320 to 1450 and DHT = 200 to 860 pg/10 mg of tissue). During the same period circulating testosterone is taken up by the non-specific tissues (intestine, diaphragm) to a lesser degree (150 to 250 pg/10 mg) as well as by hypothalamus and hypophysis (100 to 170 pg/organ). After this uptake phase, T declines in the non-specific tissues to minimal concentrations (<10 pg/10 mg). Compared to the situations in the diaphragm and intestine, DHT concentrations were significantly higher in both urogenital sinus and Molffian duct components, and T concentrations were significantly higher only in the Molffian ducts components. In the bladder, T and DHT levels were significantly higher than those of the androgen-independent tissues.  相似文献   

3.
4.
When grown as renal grafts in adult male hosts, the upper (cranial), middle and lower (caudal) portions of fetal mouse and rat Wolffian ducts developed into epididymis, epididymis plus ductus deferens, and seminal vesicle, respectively. In heterotypic tissue recombinants, the epithelia from upper and middle Wolffian ducts were instructively induced to undergo seminal vesicle morphogenesis by neonatal seminal vesicle mesenchyme. Functional cytodifferentiation was examined in these recombinants using antibodies against major androgen-dependent, seminal vesicle-specific secretory proteins. The instructively induced Wolffian duct epithelia synthesized normal amounts of all of the secretory proteins characteristic of mature seminal vesicles, as judged by immunocytochemistry on tissue sections and gel electrophoresis plus immunoblotting of secretions extracted from the recombinants. In heterospecific recombinants composed of rat and mouse tissues, the seminal vesicle proteins induced were specific for the species that had provided the epithelium. This showed that the seminal vesicle epithelium in the recombinants was derived from instructively induced Wolffian duct epithelium and not from epithelial contamination of the mesenchymal inductor. Upper Wolffian duct epithelium, instructively induced to undergo seminal vesicle morphogenesis, did not express epididymis-specific secretory proteins, showing that its normal development had been simultaneously repressed.  相似文献   

5.
A detailed knowledge of the developmental anatomy of the embryonic mouse urogenital tract is required to recognize mutant urogenital phenotypes in transgenic and knock-out mice. Accordingly, the purpose of this article is to review urogenital development in the mouse embryo and to give an illustrated methodological protocol for the dissection of urogenital organ rudiments at 12-13 days of gestation (E12-13) to isolate the urogenital ridge and at E16 to isolate the seminal vesicle, Müllerian duct, Wolffian duct, and prostatic rudiment, the urogenital sinus (UGS). The UGS can be cultured and, in the presence of testosterone, prostatic buds form in vitro. Because of the importance of mesenchymal-epithelial interactions in urogenital development, methods for the isolation of epithelium and mesenchyme from the embryonic urogenital sinus are also described. Urogenital sinus mesenchyme (UGM) and urogenital sinus epithelium (UGE) can be used to construct tissue recombinants that can either be grown in vitro or grafted in vivo for the study of epithelial-mesenchymal interactions in prostatic development.  相似文献   

6.
Summary Male and female embryos develop in an identical fashion during the initial portion of gestation. If the indifferent gonad differentiates into an ovary (or if no gonad is present), a female phenotype is formed. Male phenotypic differentiation, however, requires the presence of an endocrinologically active testis. Two secretion of the fetal testis, Müllerian inhibiting substance and testosterone, are responsible for male development. Studies of single gene mutations that interfere with androgen action indicate that testosterone itself is responsible for virilization of the Wolffian duct system into the epididymis, vas deferens, and seminal vesicle, whereas the testosterone metabolite dihydrotestosterone induces development of the prostate and male external genitalia. Thus, impairment of dihydrotestosterone formation results in a characteristic phenotype consisting of predominantly female external genitalia but normally virilized Wolffian ducts. The molecular mechanisms by which testosterone and dihydrotestosterone act during fetal development appear to involve the same high affinity receptor, a protein that transports both testosterone and dihydrotestosterone to the nucleus of target cells. When this receptor is either absent, deficient, or structurally abnormal, the actions of both testosterone and dihydrotestosterone are impaired, and the resulting developmental anomalies involve both internal and external genital structures.The original work described in this review was supported by grant AM 03892 from the National Institutes of Health  相似文献   

7.
Today it is generally held that the vagina develops from sinovaginal bulbs and that the lower third of the definitive vagina is derived from the urogenital sinus. Here we show that the entire vagina arises by downward growth of Wolffian and Müllerian ducts, that the sinovaginal bulbs are in fact the caudal ends of the Wolffian ducts, and that vaginal development is under negative control of androgens. We designed a genetic experiment in which the androgen receptor defect in the Tfm mouse was used to examine the effects of androgens. Vaginal development was studied by 3D reconstruction in androgen-treated female embryos and in complete androgen-insensitive littermates. In androgen-treated females, descent of the genital ducts was inhibited, and a vagina formed in androgen-insensitive Tfm embryos as it does in normal females. By immmunohistochemical localization of the androgen receptor in normal mouse embryos, we demonstrated that the androgen receptor was expressed in Wolffian duct and urogenital sinus-derived structures, and was entirely absent in the Müllerian duct derivatives. We conclude that the Wolffian ducts are instrumental in conveying the negative control by androgens on vaginal development. The results are discussed under evolutionary aspects at the transition from marsupial to eutherian mammals.  相似文献   

8.
The localization of the neural cell adhesion molecule L1 in the male urogenital tract (including seminal vesicles and prostate) of the mouse and bull was investigated using immunocytochemical and immunochemical methods in order to better understand the function of this glycoprotein in non-neural tissues. L1 antibodies labeled non-myelinated nerves in all portions of the urogenital tract investigated. However, L1 immunoreactivity was also found between epithelial cells of several regions of the urogenital system including epididymal tail, deferent duct, ejaculatory duct and seminal vesicles. Some L1 immunoreactivity was also demonstrated between epithelial cells of murine urinary bladder and urethra. The specificity of the immunoreaction was verified by western blots. There was no correlation between L1 expression and proliferating activity as revealed by double immunocytochemistry using various markers of cell proliferation. This unexpected expression of L1 in nonneural tissue is mainly restricted to non-proliferating epithelia of those portions of the urogenital tract that are derived from the Wolffian duct. It is suggested that L1 in these epithelia could enhance the mechanical resistance and reduce transepithelial permeability.  相似文献   

9.
Regardless of their sex chromosome karyotype, amniotes develop two pairs of genital ducts, the Wolffian and Müllerian ducts. As the Müllerian duct forms, its growing tip is intimately associated with the Wolffian duct as it elongates to the urogenital sinus. Previous studies have shown that the presence of the Wolffian duct is required for the development and maintenance of the Müllerian duct. The Müllerian duct is known to form by invagination of the coelomic epithelium, but the mechanism for its elongation to the urogenital sinus remains to be defined. Using genetic fate mapping, we demonstrate that the Wolffian duct does not contribute cells to the Müllerian duct. Experimental embryological manipulations and molecular studies show that precursor cells at the caudal tip of the Müllerian duct proliferate to deposit a cord of cells along the length of the urogenital ridge. Furthermore, immunohistochemical analysis reveals that the cells of the developing Müllerian duct are mesoepithelial when deposited, and subsequently differentiate into an epithelial tube and eventually the female reproductive tract. Our studies define cellular and molecular mechanisms for Müllerian duct formation.  相似文献   

10.
In developing mammalian males, conversion of the Wolffian ducts into the epididymides and vasa deferentia depends on androgen secretion by the testes, whereas in females these ducts remain in a vestigial form or regress. However, there is continuing uncertainty whether the androgen needs to be delivered locally, either by diffusion from the adjacent testis or, by secretion into the lumen of the duct, or whether circulating androgens maintain and virilize the Wolffian ducts. To resolve this uncertainty, we transplanted either day 0-2 or day 8-9 post-partum testes beneath the flank skin of three groups of neonatal (days 0-1) female tammar wallabies, where they developed and secreted physiological levels of hormones. The Wolffian ducts of all these females were retained and had formed extensive epididymides when examined at days 25, 34 and 87 after birth. In the two older groups of females, sampled after the time of prostatic bud formation, the urogenital sinus was virilized and there was extensive prostatic development similar to that of normal males of the same age, showing that androgen secretion had occurred. Virilization of the Wolffian ducts occurred during an early but short-lived window of sensitivity. This study provides the first clear evidence that under physiological conditions virilization can be mediated by circulating androgen.  相似文献   

11.
Summary Administration of ovine prolactin to castrated guinea pigs for 2 weeks induced hypertrophy of secretory cells in the lateral prostate when compared with the castrated controls. This was accompanied by an apparent increase in the number of profiles of granular endoplasmic reticulum and well developed Golgi complexes with dilated cisternae. An increase in the number of low-contrast electron-dense secretory granules was observed 4 weeks after prolactin treatment. In the seminal vesicle, dilatation and degranulation of granular endoplasmic reticulum and an apparent decrease in the number of secretory granules were observed 4 weeks after prolactin administration. Following castration and 2 weeks after prolactin treatment, thiamine pyrophosphatase (TPPase)-reaction product was mainly confined to 1–2 trans cisternae of the Golgi complexes in secretory cells of the lateral prostate and the seminal vesicle. In both glands, a reduction of TPPase activity was observed 2 weeks following prolactin administration, and the reaction product was totally absent after prolonged treatment for 4 weeks. The present study has provided morphological evidence that prolactin is capable of stimulating the secretory function of the lateral prostate while exerting some inhibitory effects on the seminal vesicle of the castrated guinea pig. In both glands, TPPase activity, and hence the process of glycosylation was inhibited after prolactin administration. The results from radioimmunoassay indicated that the action of prolactin on these glands could be a direct effect and not mediated through testosterone.  相似文献   

12.
The copulatory organ in adult specimens of Archilopsis unipunctata has been studied by transmission electron microscopy.This copulatory organ is of the conjuncta-duplex type with eversible cirrus. The seminal vesicle, lined with a nucleate epithelium, is surrounded by spirally arranged muscles. The fibres are enclosed in a sheath that is continuous with the septum of the bulbus and the basement lamina of the male canal epithelium. Distally to the seminal vesicle the bulbus is filled with the secretory cell-necks of the prostate glands. The male canal shows three different parts: seminal duct, ejaculatory duct and eversible cirrus. At the transition of seminal duct and ejaculatory duct two prostate ducts open into the lumen. The structure of the epithelium lining the different parts of the canal is described. The transition into the cirrus may be recognized by an abrupt change in the thickness, the electron density and the stratification in the basement lamina and by the disappearance of the epithelium absent indeed in the cirrus. The material found inside the cirrus-lumen is different according to the zone considered. The origin of this material and of the cirrus teeth is discussed.Abbreviations ab- apoptotic body - ba- bacteria - bb- basal bodies of cilia - bl- basement lamina - bw- body wall - c- cilia - cb- cell body - cgp- common genital porus - ci- cirrus - cip- cirrus plug - cl- lumen of cirrus - cm- circular muscles - cr- cytoplasmatic remnants - cs- cytoplasmatic sheets - ejd- ejaculatory duct - epej- epithelium of ejaculatory duct - d- desmosomes - f- flagella of spermatozoa - fd- female duct - fp- female porus - gc- golgi complex - gl- glycogen particles - hd- hemidesmosomes - lm- longitudinal muscles - ly- lysosome-like body - m- muscles - mb- muscles of the bulbus - mc- muscles of the cirrus - mc- muscles of the seminal vesicle - mi- mitochondria - ml- microvilli - ms- mesenchyme - nsd- nuclei of the seminal duct - pd- prostate duct - pg- prostate glands - ri- ribosomes - s- septum - sb- secretory vesicle - sd- seminal duct - sp- spines - sv- seminal vesicle - v- vagina - vd- vas deferens  相似文献   

13.
Summary Ultrastructural localization of thiamine pyrophosphatase (TPPase) activity was studied in secretory cells of the lateral prostate and seminal vesicle of normal and castrated guinea pigs and castrates treated with 17-oestradiol benzoate. The present study has demonstrated that TPPase reaction product is consistently localized in the three to four trans cisternae of Golgi complexes in both the lateral prostate and the seminal vesicle. The reaction was intense and the reaction product often filled the cisternae completely.After castration there was a decrease in TPPase activity in both glands as revealed by the reduction in the amount of the reaction product which was found mainly in one to two trans cisternae of the regressed Golgi complex. The reaction product changed from a dense to a more particulate or granular pattern or to discrete deposits of high electron-density.Administration of 17-oestradiol benzoate to the castrates caused changes in the localization and patterns of distribution of TPPase. In the lateral prostate there was an apparent increase in TPPase activity. The reaction product was found in two to four trans cisternae and occasionally in the trans-most cisternae of the dilated Golgi complex. The reaction product appeared as discrete, dense coarse precipitates. In the seminal vesicle TPPase reaction product was consistently found in one to two trans cisternae in cells with larger Golgi complexes. However, almost all cisternae of the smaller Golgi complexes were TPPase-positive. The cytochemicl results of the present study suggest that TPPase activity and possibly the process of glycosylation in secretory cells of the lateral prostate and seminal vesicle may have been affected after castration and after oestradiol administration.  相似文献   

14.
Summary The male reproductive system of Labidocera aestiva produces a flask-shaped spermatophore connected to a chitin-like coupling apparatus. As immature spermatozoa leave the anterior region of the testis, they pass through the lumen of a long, sinuous duct composed of a ductus deferens and seminal vesicle. Ultrastructural examination of the ductus deferens reveals a highly glandular, columnar epithelium. The cells contain arrays of rough endoplasmic reticulum and abundant, well-developed Golgi complexes. This region produces and releases into the lumen, a flocculent substance and two granular secretions that constitute the seminal fluid. In its terminal part, the ductus deferens synthesizes another secretion that forms the spermatophore wall enclosing the spermatozoa and seminal fluid. Final synthesis of the spermatophore wall occurs within the thin-walled seminal vesicle, although this region functions primarily as a storage organ. Contiguous to the seminal vesicle is an elongate, highly glandular spermatophore sac. The chitin-like coupling apparatus, which functions to attach the spermatophore to the female, is formed in the anterior region of the sac by secretions from eight cell types. The posterior region of the sac stores the flask-shaped spermatophore and produces secretions that aid ejaculation of the entire spermatophore complex.Contribution No. 236, Harbor Branch Foundation, Inc.  相似文献   

15.
Summary In the genital tract of male and female mouse embryos cholinesterase activity is described that is independent from innervation. The enzyme activity is localized in the mesenchyme at the junction of Wolffian and Müllerian ducts with the urogenital sinus. During male development prostate buds and vesicular glands grow out into the cholinesterase-active mesenchyme. During female development the active mesenchyme participates in the downgrowth of the vaginal anlage. Ultrastructurally the cholinesterase activity is localized in the perinuclear cisterna and in smooth endoplasmic reticulum of the mesenchymal cells. The enzyme activity disappears with definitive differentiation of the tissue. The embryonic cholinesterase is a component of a primitive muscarinic system. Its relation to the morphogenetic action of testosterone and its possible general functions are discussed.  相似文献   

16.
The budding of the urogenital sinus epithelium into the surrounding mesenchyme signals the onset of prostate morphogenesis. The epithelial and mesenchymal factors that regulate ductal budding and the ensuing process of ductal growth and branching are not fully known. We provide evidence that bone morphogenetic protein 4 (BMP4) is a mesenchymal factor that regulates ductal morphogenesis. The Bmp4 gene was most highly expressed in the male urogenital sinus from embryonic day 14 through birth, a period marked by formation of main prostatic ducts and initiation of ductal branching. From an initial wide distribution throughout the prostatic anlage of the urogenital sinus, Bmp4 expression became progressively restricted to the mesenchyme immediately surrounding the nascent prostatic ducts and branches. Exogenous BMP4 inhibited epithelial cell proliferation and exhibited a dose-dependent inhibition of ductal budding in urogenital sinus tissues cultured in vitro. Adult Bmp4 haploinsufficient mice exhibited an increased number of duct tips in both the ventral prostate and coagulating gland. Taken together, our data indicate that BMP4 is a urogenital sinus mesenchymal factor that restricts prostate ductal budding and branching morphogenesis.  相似文献   

17.
Summary This study describes the fine structure of the hamster seminal vesicle. Intact, sexually mature young and aged animals were used to obtain the results presented. The epithelium of the hamster seminal vesicle contains numerous large electron-dense structures, with a single limiting membrane, with many internal granules and, in the aged animals, myelin-like figures. Based on histochemical results presented in this study, and those of others, it is suggested that this material is a lipofuscin pigment. This substance is of special interest inasmuch as in the hamster seminal vesicle epithelium, pigment is a more sensitive indicator of circulating androgen than is, as in the case of the rat seminal vesicle, regression of cell height. It is possible that this pigment takes origin as breakdown products of mitochondria, the endoplasmic reticulum and the Golgi apparatus. The relation of pro-pigment granules and lysosomes is discussed. Results indicate that pigment is formed at sites of increased catabolism in response to a biological insult to the cell.Supported by U.S.P.H.S. grant RG 6583 from the National Institutes of Health, National Institute of General Medical Sciences.  相似文献   

18.
19.
1. Castration of adult rats markedly decreases the amounts of polyamines (putrescine, spermidine and spermine) and of RNA and DNA in the ventral prostate and the seminal vesicle. 2. Daily injections of testosterone propionate to rats castrated 7 days previously increase polyamine and nucleic acid contents more rapidly in the seminal vesicle than in the ventral prostate. 3. After 7 days of androgen treatment, polyamine and nucleic acid contents of the seminal vesicle are significantly higher than those of intact animals. Nucleic acid, but not polyamine, contents return to normal values during the next 4 days of continued treatment. In the prostate, androgen treatment increases polyamine and nucleic acid contents to, but not above, normal values. 4. Repeated doses of alpha-difluoromethylornithine, a potent enzyme-activated irreversible inhibitor of ornithine decarboxylase, totally blocked the testosterone-induced increase of putrescine and spermidine in the ventral prostate and of putrescine in the seminal vesicle. They slowed significantly the accumulation of spermine in the ventral prostate and of spermidine in the seminal vesicle. alpha-Difluoromethylornithine also retarded the testosterone-induced accumulation of RNA in the ventral prostate. However, no clear correlation was apparent between accumulation of polyamines and of nucleic acids in the two organs. 5. alpha-Difluoromethylornithine markedly slows the testosterone-induced weight gain of the prostate, but not of the seminal vesicle. Cytological studies suggest that this effect on the prostate is due to inhibition of the androgen-induced restoration of the secretion content of prostatic acini.  相似文献   

20.
Freshly isolated mouse prostate epithelial cells regenerate fully differentiated prostate tissue when combined with embryonic urogenital sinus mesenchyme and grafted in vivo. We show here that this regenerative capacity, which has been attributed to a small population of pleuripotential progenitor epithelial cells, is rapidly lost when the cells are placed in monolayer culture but can be maintained by culture in anchorage-independent conditions. Epithelial cells placed in anchorage-independent culture formed proliferating spheres that could be serially passaged and exhibited increased expression of putative stem cell markers as compared to cells grown in monolayer culture. Epithelial cells isolated from the fetal urogenital sinus, the newborn, and adult prostate formed spheres with similar efficiency, while cells isolated from the post-castration prostate exhibited significantly higher sphere-forming abilities. When passaged spheres were recombined with E17 rat urogenital sinus mesenchyme and grafted in vivo, they generated fully differentiated mouse prostate glandular epithelium containing both p63+ basal cells and p63− luminal cells and expressing a variety of prostate-specific and terminal differentiation markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号