首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three studies were conducted to investigate the endocrine and ovulatory responses of the prepubertal gilt to exogenous estradiol and gonadotropins. In Study One, prepubertal gilts of 190 days of age were injected s.c. with pregnant mare's serum gonadotropin (PMSG) or physiological saline (SAL). Following PMSG injection, circulating levels of estradiol-17 beta (E2) increased. This increase was followed by a surge of luteinizing hormone (LH), estrus, a rise in progesterone (P4) levels, and ovulation. None of the gilts given SAL had increased levels of E2, LH or P4, and none ovulated. In Study Two, prepubertal gilts of 165 days of age were treated with varying doses of PMSG. A positive correlation was observed between dose of PMSG and peak levels of E2 (r = 0.83, P less than 0.001) and between dose of PMSG and number of corpora lutea (r = 0.96, P less than 0.001). In Study Three, gilts were treated at ages of 70 to 190 days with estradiol benzoate (EB), PMSG, or corn oil plus saline (CO/SAL) followed in 72 to 96 h by human chorionic gonadotropin (hCG) or SAL. All gilts treated with EB at 100 to 175 days of age had two surges of LH at an approximately 24-h interval. Gilts responding to EB at 70 and 190 days had only one surge of LH. Gilts of 100 days of age or older responded to PMSG with a single surge or two surges of LH. Ovulation in response to treatment was observed in gilts of 100 days of age or greater but not at 70 days. The conclusions drawn from these studies are that 1) PMSG-induced ovulation is preceded by an increase in circulating levels of E2 and in some gilts by a surge of LH, and 2) prepubertal gilts are able to respond to exogenous endocrine stimulation with either a single surge or multiple surges of LH at 70 to 190 days but are unable to ovulate in response to exogenous gonadotropins until 100 days of age.  相似文献   

2.
In Exp. 1, PMSG was injected to 26-day-old prepubertal rats to induce ovulations. On Day 2 (2 days later, the equivalent of the day of pro-oestrus) they received at 08:00 h 5 mg hydroxyflutamide or vehicle and at 12:00 h 2 mg progesterone or testosterone or vehicle. Animals were killed at 18:00 h on Day 2 or at 09:00 h on Day 3. Progesterone but not testosterone restored the preovulatory LH surge and ovulation in hydroxyflutamide-treated rats. In Exp. 2, 2 mg progesterone or testosterone were injected between 10:30 and 11:00 h on Day 2, to advance the pro-oestrous LH surge and ovulation in PMSG-primed prepubertal rats. Injection of hydroxyflutamide abolished the ability of progesterone to advance the LH surge or ovulation. Testosterone did not induce the advancement of LH surge or ovulation. In Exp. 3, ovariectomized prepubertal rats implanted with oestradiol-17 beta showed significantly (P less than 0.01) elevated serum LH concentrations at 18:00 h over those observed at 10:00 h. Progesterone injection to these animals further elevated the serum LH concentrations at 18:00 h, in a dose-dependent manner, with maximal values resulting from 1 mg progesterone. Hydroxyflutamide treatment significantly (P less than 0.003) reduced the serum LH values in rats receiving 0-1 mg progesterone but 2 mg progesterone were able to overcome this inhibition. It is concluded that progesterone but not testosterone can reverse the effects of hydroxyflutamide on the preovulatory LH surge and ovulation. It appears that hydroxyflutamide may interfere with progesterone action in induction of the LH surge, suggesting a hitherto undescribed anti-progestagenic action of hydroxyflutamide.  相似文献   

3.
Ten prepubertal and 8 mature gilts were superovulated with PMSG and hCG, and inseminated with fresh boar semen. Zygotes were surgically recovered from oviducts 54-60 h after hCG. One and 2-cell zygotes were randomly allotted to Medium PL (modified BMOC-3 supplemented with 0.1 mM-EDTA and 1.5% BSA) or Medium G (Medium PL without pyruvate or lactate). Eggs were washed twice in medium, and placed in microdrops of medium overlaid with silicon oil for culture in an humidified 5% CO2, 5% O2, 90% N2 environment, then observed daily for 6 days. Development of eggs was dependent (P less than 0.001) on the interactive effects of age of gilt (prepubertal versus mature) and medium type (PL versus G) used in culture. A greater proportion of eggs cultured in Medium G developed further than did eggs in Medium PL (P less than 0.001). Additionally, a greater proportion of eggs from mature gilts developed further than did eggs from prepubertal gilts (P less than 0.02). We suggest that these results provide evidence that zygotes resulting from superovulation regimens of prepubertal gilts do not possess the same capacity for in-vitro development as do zygotes from pubertal gilts.  相似文献   

4.
Prepubertal ewe lambs were treated with FSH after progesterone priming for 12 days (Group P), monensin supplementation for 14 days (Group M) or a standard diet (Group C). Serial blood samples were taken for LH and progesterone assay, and ovariectomy was performed on half of each group 38-52 h after start of treatment to assess ovarian function, follicular steroid production in vitro and the concentration of gonadotrophin binding sites in follicles. The remaining ewe lambs were ovariectomized 8 days after FSH treatment to determine whether functional corpora lutea were present. FSH treatment was followed by a preovulatory LH surge which occurred significantly later (P less than 0.05) and was better synchronized in ewes in Groups P and M than in those in Group C. At 13-15 h after the LH surge significantly more large follicles were present on ovaries from Group P and M ewes than in Group C. Follicles greater than 5 mm diameter from ewes in Groups P and M produced significantly less oestrogen and testosterone and more dihydrotestosterone, and had significantly more hCG binding sites, than did similar-sized follicles from Group C animals. Ovariectomy on Day 8 after the completion of FSH treatment showed that ewes in Groups P and M had significantly greater numbers of functional corpora lutea. These results indicate that, in prepubertal ewes, progesterone priming and monensin supplementation may delay the preovulatory LH surge, allowing follicles developing after FSH treatment more time to mature before ovulation. This may result in better luteinization of ruptured follicles in these ewes, with the formation of functional corpora lutea.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of central nervous system administration of morphine on secretion of luteinizing hormone (LH), follicle-stimulating hormone, and prolactin were investigated in ovariectomized gilts stereotaxically implanted with lateral ventricular cannulas. In Experiment 1, mean serum LH and follicle-stimulating hormone concentrations and serum LH pulse frequency were unaffected by artificial cerebrospinal fluid administration (P greater than 0.1), but decreased (P less than 0.01) in 8 of 11 gilts when 500 micrograms of morphine were given 3 hr later. Serum LH pulse amplitude was unaffected (P greater than 0.1) by cerebrospinal fluid or morphine injection. In Experiment 2, luteinizing hormone concentrations decreased (P less than 0.0001) and prolactin concentrations increased (P less than 0.0001), but follicle-stimulating hormone concentrations did not change (P greater than 0.1) after 500 micrograms of morphine. Gonadotropin responses to 10 micrograms of gonadotropin-releasing hormone, given 2 hr after intraventricular injection, were similar (P greater than 0.1) for morphine- and cerebrospinal fluid-treated gilts. These results indicate that morphine inhibits LH secretion at the level of the central nervous system, and are consistent with the concept that endogenous opioid peptides participate in the regulation of gonadotropin and prolactin release in pigs.  相似文献   

6.
Ovaries were obtained from naturally cyclic pigs on Days 16-17, 18, 19, 20 and 21 of the oestrous cycle and on the basis of observed follicular characteristics were assigned as representative of the early (Group 1), mid- (Groups 2 and 3) or late (after LH; Group 4) follicular phase. Follicular development in cyclic gilts was compared with that in ovaries obtained from late prepubertal gilts 36 (Group 5) or 72 (Group 6) h after treatment with 750 i.u. PMSG alone, or with a combination of 500 i.u. hCG 72 h after PMSG and slaughter 30-40 h later (Group 7). After dissection of all follicles greater than 2 mm diameter, follicular diameter, follicular fluid volume, follicular fluid concentrations of progesterone, oestradiol and testosterone, and the stage of oocyte maturation were determined. Combined PMSG/hCG treatment of immature gilts resulted in a pattern of follicular development different from that in naturally cyclic gilts during the follicular phase. Overall exogenous gonadotrophin treatment also increased (P less than 0.001) the variability in follicular diameter and fluid volume. Comparisons between appropriate groups also established differences in the variability of both morphological (diameter and volume, Group 1 vs Group 5; P less than 0.05) and biochemical development (follicular fluid oestradiol, Group 3 vs Group 6 and Group 4 vs Group 7; both P less than 0.05). Such differences in both morphological and biochemical characteristics between cyclic and PMSG/hCG-treated gilts were particularly evident in the population of larger (greater than 6 mm) follicles. These results indicate that the pattern of follicular development in naturally cyclic and in PMSG/hCG-treated gilts is dissimilar and suggests that the ovaries of gonadotrophin-treated prepubertal gilts are functionally different from the ovaries of mature females.  相似文献   

7.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

8.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

9.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

10.
Twenty prepuberal (P) gilts, 56.5 +/- 1.1 kg body weight, were induced to ovulate with 1000 IU of pregnant mare's serum gonadotropin followed 72 h later by 500 IU of human chorionic gonadotropin (hCG), and bred by artificial insemination (AI) with 50 ml fresh pooled boar semen the day after hCG treatment (Day 0). Eighteen mature (M) gilts, 120.6 +/- 1.7 kg body weight, were bred by AI each day of estrus using pooled semen from the same boars (onset of estrus = Day 0). One-half of each group was fed the prostaglandin (PG) synthesis inhibitor indomethacin (IND), at 10 mg/kg body weight, or control (C) feed twice daily on Days 10 to 25. Blood samples taken by venipuncture on Days 10, 15, 20 and 25 were quantitated for progesterone (P4) and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by radioimmunoassay. Ovaries were examined on Day 26. All M-C gilts were pregnant, whereas 3 of 9 M-IND gilts (P less than 0.05) and none of the P gilts (P less than 0.01) were pregnant. Three of the 6 nonpregnant M-IND gilts displayed estrus on Day 21. The 3 remaining M-IND gilts had maintained corpora lutea (CL) on Day 26. Only corpora albicantia were present in P gilts on Day 26. Serum P4 concentrations for M-C gilts, nonpregnant M-IND gilts with maintained CL, and pregnant M-IND gilts were not different. Serum P4 for all nonpregnant gilts in which CL had regressed by Day 25 decreased to less than 5 ng/ml on Day 20.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Prepuberal gilts were treated with 750 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. In this model, ovulation occurred at 42 +/- 2 h post hCG treatment. When 500 mug of cloprostenol was injected at 34 and of 36 h after hCG injection, 78% of the preovulatory follicles ovulated by 38 h compared with 0% in the control gilts. In addition, plasma progesterone concentrations were significantly higher in the cloprostenol-treated group than in the control group (P<0.01) at 38 h, indicating luteinization along with premature ovulation. These results suggest that prostaglandin F(2)alpha (PGF(2)alpha) or an analog can be used to advance, synchronize or induce ovulation in gilts.  相似文献   

12.
In Exp. I infusions of prolactin (0.5 mg in 2 ml sterile saline) were repeated every 2 h for 36 h on Days 12-13 of the cycle. In Exp. II infusions of prolactin were administered from Days 17 to 19 (60 h) at 2-h intervals. Control gilts were given 2 ml sterile saline at similar intervals during the same period. Basal prolactin concentrations before initiation of infusions ranged from 1.3 +/- 0.1 to 5.6 +/- 2.2 ng/ml in both experiments. By 5 min after a prolactin infusion, mean plasma prolactin concentration ranged from 74.9 +/- 5.8 to 113.0 +/- 9.5 ng/ml, but then declined to approximately equal to 10 ng/ml just before the next infusion of prolactin. Administration of prolactin during the luteal phase of the oestrous cycle of the gilts had no effect on basal levels of progesterone, oestradiol or LH. During the follicular phase there were no differences (P greater than 0.05) between control and prolactin-treated gilt progesterone and LH concentrations, but oestradiol plasma values were decreased (P less than 0.05) on the 2nd and 3rd day of prolactin treatment. Our results would indicate that prolactin does not play a major role in the regulation of the oestrous cycle of the pig.  相似文献   

13.
It is widely assumed that luteinizing hormone-releasing hormone (LHRH) neuronal activation is involved in the preovulatory surge of LH in the hen. In addition, this LH surge may be initiated by ovarian progesterone (P4) release. Thus, spontaneous and P4-induced LH surges should be associated with acute changes in LHRH content of discrete hypothalamic areas associated with LHRH cell bodies and/or LHRH axon terminals. Medial preoptic area (mPOA) and infundibulum (INF) LHRH content was measured by radioimmunoassay at intervals before, at, and following peak LH levels of a spontaneous preovulatory surge of LH, as well as when this surge was advanced by P4 administration in laying hens. Nonlaying birds served as additional controls. Levels of serum LH, P4, 17 beta-estradiol and pituitary LH were also measured. Increased (P less than 0.05) LHRH content in mPOA without changes in the INF are associated with peak serum LH levels of the spontaneous LH surge. By contrast, decreased (P less than 0.05) LHRH content in both mPOA and INF is associated with peak serum LH levels when the spontaneous surge was advanced 8 h by P4 administration to laying hens. Medial preoptic area and INF LHRH contents were significantly lower (P less than 0.05) in nonlaying than in laying hens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

15.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   

16.
The aim of this study was to determine the effect of intrauterine Escherichia coli infusion on the patterns of plasma LH, prolactin, progesterone, androstenedione, testosterone, oestrone, oestradiol-17beta, cortisol and 13,14-dihydro-15-keto-prostaglandin F2alpha (PGFM) in gilts during the oestrous cycle. On day 4 of the oestrous cycle (day 0), 25 mL of saline or 25 mL of Escherichia coli suspension, containing 10(7) colony forming units x mL(-1), was infused once into the each uterine horn in group I or II respectively. The control gilts developed a new oestrous cycle at the expected time but not bacteria-treated. Endometritis and vaginal discharge developed in all gilts after Escherichia coli infusion. The administration of Escherichia coli resulted in a reduction of plasma levels of LH, prolactin, oestrone and oestradiol-17beta (P < 0.05-0.001), mainly on days 15-18 after treatment (expected perioestrous period). During this time, the plasma androstenedione level was elevated (P < 0.05-0.001) after bacteria infusion. In the gilts receiving bacteria, progesterone concentration decreased from day 8 after treatment and was low until the end of the study (P < 0.05-0.001). On days 8-12 after bacteria administration, the level of PGFM was higher (P < 0.001) than that found in the control group. These results suggest that the developing inflammatory process of the endometrium in gilts following Escherichia coli infusion significantly affects the pituitary-ovarian axis function as well as prostaglandin production leading to anoestrus.  相似文献   

17.
We examined the effects of (a) oestrogen and progesterone on concentrations of luteinizing hormone/human chorionic gonadotrophin (LH/hCG) receptors in uterine smooth muscle in vivo and (b) hCG on spontaneous myometrial contractions in vitro. Ovariectomized gilts received 2 ml corn oil (control; n = 5), 2 mg oestradiol benzoate (n = 6) or 20 mg progesterone (n = 5) for 5 days. Gilts were hysterectomized 8 h after the last injection and longitudinal sections of myometrium were incubated in modified Krebs' solution with 0 or 10 i.u. of hCG (n = 10/gilt) for 4 h at 37 degrees C in 95% O2:5% CO2. After incubation, myometrial sections were placed in a tissue chamber perfused with Krebs' solution and mechanical activity was recorded for 30 min. Cell membrane fractions were prepared from myometrial tissue not used for in-vitro studies and analysed for LH/hCG receptors. Treatment with oestradiol benzoate increased (P less than 0.01) the number of LH/hCG-binding sites compared with gilts receiving corn oil or progesterone. Incubation of myometrium with hCG reduced (P less than 0.01) the frequency and amplitude of spontaneous uterine contractions in gilts treated with oestradiol benzoate. In contrast, hCG had no effect (P greater than 0.05) on the pattern of myometrial contractions in gilts given corn oil or progesterone. These results indicate that oestradiol promotes the synthesis of LH/hCG receptors in pig myometrium and incubation of oestrogen-primed tissue with hCG has a quiescent effect on myometrial contractility.  相似文献   

18.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

19.
A surge of LH during the follicular phase triggers multiple pathways, including progesterone and prostaglandin synthesis before culminating in ovulation. Progesterone has been shown to be involved in the ovulatory process in many species. In prepuberal gilts treated with PMSG/hCG the follicular progesterone level has been shown to increase sharply before ovulation. This study was conducted to investigate whether premature elevation of progesterone can accelerate the ovulatory process in Large White PMSG/hCG-treated prepuberal gilts. Fifty-four Large White gilts were treated with 1000 IU, i.m. PMSG to stimulate follicular growth, followed 72 h later by 500 IU, i.m. hCG to induce ovulation. Gilts in the treatment group (n = 27) were given progesterone intermuscularly at 24 and 36 h after hCG. Ovaries were exteriorized to observe ovulation points during laparotomy under general anesthesia at 38 to 50 h after hCG. Ovulation in both groups commenced by 40.05 h after hCG and was completed by 47.71 h in the control group and by 42.87 h after hCG in the treated group. Progesterone shortened (P < 0.01) ovulation time by 4.84 h and the time required (P < 0.01) for the median proportion of follicles to ovulate (40.7 vs 43.5 h after hCG). Progesterone also increased (P < 0.01) the plasma progesterone concentration without altering follicular progesterone concentration.  相似文献   

20.
Proestrus surges of serum LH, FSH and prolactin (PRL) were significantly reduced when morphine HCl (50 and 10 mg/kg) was administered to 4-day cycling rats just prior to the proestrous critical period. The inhibitory effect of morphine was reversed by naloxone, a morphine antagonist, at the dose which had no effect on the proestrus surges of serum LH, FSH or PRL. The hypothalamic LH-RF content of proestrous rats at 1800 hr (during the proestrus surge) was not significantly different from that at 1400 hr (before the surge) and was not affected by pretreatment with morphine or naloxone. Our results suggest that naloxone reverses the anti-ovulatory effect of morphine by antagonizing the inhibitory effect of morphine on preovulatory surges of gonadotropins or PRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号