首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pro-HNP, a urine protein isolated from hereditary nephritis patients, is derived from C3 and resembles the C3c domain. It contains disulfide-linked polypeptides of beta 75, alpha 40, and alpha 28. Plasmin degraded pro-HNP in vitro to HNP, which was also isolated from the urine of patients and which contained disulfide-linked polypeptides of beta 60, alpha 38, and alpha 26, and noncovalently bound polypeptide of beta 17. Amino terminal sequence analyses and amino acid compositions of the seven polypeptides isolated from pro-HNP and HNP show that beta 75 degrades to beta 60 and beta 17 (beta 17 locates at the amino end of beta 75), alpha 40 degrades to alpha 38 (both locate at the carboxyl end of the alpha-chain of C3), and alpha 28 degrades to alpha 26 (both are from the amino end of the alpha'-chain of C3b). These results confirm the enzymatic specificity of plasmin on pro-HNP. In HNP, the half-cystine contents of beta 60, alpha 38, alpha 26, and beta 17 were approximately 3, 12, 3, and 4, respectively. Partial reduction readily released alpha 40 from pro-HNP and alpha 38 from HNP. There were about five intra-chain disulfide bonds in alpha 40 or alpha 38; stepwise reduction of these intra-polypeptide bonds apparently accounted for multiple conformations of alpha 40 or alpha 38.  相似文献   

2.
Polypeptide 3, the major membrane-penetrating protein of the human erythrocyte membrane, was characterized, together with two major fragments derived by specific proteolysis of the native protein in the membrane. One fragment (fragment 3f) was obtained from thermolysin cleavage in the extracellular region of the protein, and the other (fragment T1) was derived from tryptic cleavage in the intracellular region of the protein. The results of N- and C-terminal group analysis suggest that fragment 3f contains the N-terminal region of polypeptide 3 and fragment T1 contains the C-terminal part of the molecule. The carbohydrate contents of the polypeptides suggest that carbohydrates are present in three regions of the molecule, much of this carbohydrate being present in the C-terminal part of the molecule. This region of the protein also contains the receptors for concanavalin and the lectins from Phaseolus vulgaris and Ricinis communis, and our results suggest that there is heterogeneity in the carbohydrate chains present in the C-terminal region of polypeptide 3. These data are related to the folding of polypeptide 3 in the erythrocyte membrane.  相似文献   

3.
The binding site on the human third complement component for bovine conglutinin has been located. C3 fragments were purified to homogeneity by preparative SDS-polyacrylamide-gel electrophoresis. Only the N-terminal 27,000 dalton (Da) fragment of the alpha'-chain and the beta-chain were found to be glycosylated, and the carbohydrate was susceptible to endo-beta-N-acetylglucosaminidase H. This finding indicates that only high mannose or hybrid-type oligosaccharide chains are present on the C3 molecule. Binding to conglutinin was determined by an enzyme-linked immunosorbent assay and occurred with C3b, iC3b, C3c, the alpha-chain, and the 27,000 Da fragment of the alpha'-chain, but not with C3d or the C-terminal 40,000 Da fragment of the alpha'-chain. The beta-chain displayed very weak interaction. Binding to conglutinin could be inhibited by EDTA, N-acetylglucosamine, and to a lesser degree by mannose. Enzymatic removal of the carbohydrate from the C3 molecule abolished binding to conglutinin. It is concluded that bovine conglutinin binds to the carbohydrate moiety located on the N-terminal 27,000 Da polypeptide of the alpha-chain.  相似文献   

4.
cGMP-stimulated phosphodiesterase (PDE) has been directly photolabeled with [32P]cGMP using UV light. Sequence analysis of peptide fragments obtained from partial proteolysis or cyanogen bromide cleavage indicate that two different domains are labeled. One site, on a Mr = 36,000 chymotryptic fragment located near the COOH terminus, has characteristics consistent with it being close to or part of the catalytic site of the enzyme. This peptide contains a region of sequence that is highly conserved in all mammalian cyclic nucleotide PDEs and has been postulated to contain the catalytic domain of the enzyme. The other site, on a Mr = 28,000 cyanogen bromide cleavage fragment located near the middle of the molecule, probably makes up part of the allosteric site of the molecule. Labeling of the enzyme is concentration dependent and Scatchard analysis of labeling yields a biphasic plot with apparent half labeling concentrations of about 1 and 30 microM consistent with two types of sites being labeled. Limited proteolysis of the PDE by chymotrypsin yields five prominent fragments that separate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at Mr = 60,000, 57,000, 36,000, 21,000, and 17,000. Both the Mr = 60,000 and 57,000 apparently have blocked NH2 termini suggesting that the Mr = 57,000 fragment is a subfragment of the Mr = 60,000 fragment. Primary sequence analysis indicates that both the Mr = 21,000 and 17,000 fragments are subfragments of the Mr = 36,000 fragment. Autoradiographs of photolabeled then partially proteolyzed enzyme show labeled bands at Mr = 60,000, 57,000, and 36,000. Addition of 5 microM cAMP prior to photolabeling eliminates photolabeling of the Mr = 36,000 fragment but not the Mr = 60,000 or 57,000 fragments. The labeled site not blocked by cAMP is also contained in a Mr = 28,000 cyanogen bromide fragment of the enzyme that does not overlap with the Mr = 36,000 proteolytic fragment. Limited chymotryptic proteolysis also increases basal activity and eliminates cGMP stimulation of cAMP hydrolysis. The chymotryptic fragments can be separated by either ion exchange high performance liquid chromatography (HPLC) or solid-phase monoclonal antibody treatment. A solid-phase monoclonal antibody against the cGMP-stimulated PDE removes the Mr = 60,000 and 57,000 labeled fragments and any intact, unproteolyzed protein but does not remove the Mr = 36,000 fragment or the majority of activity. Ion exchange HPLC separates the fragments into three peaks (I, II, and III). Peaks I and II contain activity of approximately 40 and 100 units/mg, respectively. Peak II is the undigested or slightly nicked native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Human properdin (P) was found to be sensitive to the action of trypsin, chymotrypsin, pepsin, and Streptomycetes caesipitosus protease. Incubation of P with these enzymes resulted in loss of its functional activity and the production of antigenically deficient components compared to untreated P. Upon incubation with trypin, P was initially cleaved into a minor fragment and a major fragment. Further degradation ot the fragments occurred with prolongation of inculation time. The minor fragment was highly susceptible to further proteolysis compared to the major fragment which contained the carbohydrate moiety of the molecule. SDS-polyacrylamide gel electrophoretic analysis of trypsin-digested P suggested that the subunit polypeptide chains were initially cleaved at similar points to produce the major and minor fragments. The sedimentation velocity of the major fragment was higher than that of the intact molecule. The implications of these observations of the configuration of P are discussed.  相似文献   

6.
A 75,000-dalton protein complex involved in DNA binding during transformation was purified from membranes of competent Bacillus subtilis cells. Previous results (Smith et al., J. Bacteriol. 156:101-108, 1983) showed that the complex contained two polypeptides, polypeptide a (molecular weight, 18,000; isoelectric point, 5.0) and polypeptide b (molecular weight, 17,000; isoelectric point, 4.7) in approximately equal amounts. In the present experiments the two polypeptides were extracted from two-dimensional gels and studied separately and in combination with respect to DNA binding and nuclease activities. For DNA binding the interaction of both polypeptides was required. DNA binding occurred efficiently in the presence of EDTA. Nuclease activity was restricted to polypeptide b. The nucleolytic properties of b were identical to those of the native 75,000-dalton complex. Polypeptide a affected b by reducing its nuclease activity. Analysis of the nuclease subunit b on DNA-containing polyacrylamide gels revealed nuclease activities at four different molecular weight positions. These activities were identical to the major competence-specific nuclease activities which were previously implicated in the entry of donor DNA during transformation (Mulder and Venema, J. Bacteriol. 152:166-174, 1982). These results indicate that the 75,000-dalton protein complex is composed of two different competence-specific polypeptides involved in both binding and entry of donor DNA. The possible roles of the two polypeptides in the transformation of B. subtilis are discussed.  相似文献   

7.
Smooth muscle phosphatase-I (SMP-I), a protein phosphatase purified from turkey gizzard smooth muscle, is composed of 2 regulatory subunits (Mr = 60,000 and 55,000) and a catalytic subunit (Mr = 38,000). Two other forms of this enzyme have been prepared and characterized. The free catalytic subunit, termed SMP-Ic, was prepared by ethanol treatment of SMP-I, and a form devoid of the 55,000-Da subunit, termed SMP-I2, was prepared by limited tryptic digestion. Exposure of SMP-I to proteases like trypsin and chymotrypsin results in a rapid degradation of the 55,000-Da polypeptide. Degradation of the catalytic subunit is observed only upon prolonged digestion. The 60,000-Da polypeptide appears to be resistant to the action of trypsin and chymotrypsin. SMP-I dephosphorylates myosin light chains but is not active toward intact myosin or heavy meromyosin. However, when the catalytic subunit is dissociated from both regulatory subunits or from the 55,000-Da polypeptide, the enzyme becomes active toward myosin suggesting that the 55,000-Da polypeptide inhibits the activity of the catalytic subunit toward myosin. In addition to alteration of the substrate specificity, the regulatory subunits also modulate the effect of divalent cations, like Mn2+, on the activity of the enzyme.  相似文献   

8.
The first stage of amplification in the cyclic GMP cascade in bovine retinal rod is carried out by transducin, a guanine nucleotide regulatory protein consisting of two functional subunits, T alpha (Mr approximately 39,000) and T beta gamma (Mr approximately 36,000 and approximately 10,000). Limited trypsin digestion of the T beta gamma subunit converted the beta polypeptide to two stable fragments (Mr approximately 26,000 and approximately 14,000). The GTPase and Gpp(NH)p binding activities were not significantly affected by the cleavage. Trypsin digestion of the T alpha subunit initially removed a small segment from the polypeptide terminus and resulted in the formation of a single 38,000-Da fragment. When this fragment was recombined with the intact T beta gamma subunit in the presence of membranes containing photolyzed rhodopsin, the reconstituted transducin exhibited greatly reduced GTPase and Gpp(NH)p binding activities. The loss in activities was due to the inability of the cleaved T alpha to bind to the photolyzed rhodopsin. Prolonged digestion converted the 38,000-Da fragment to a transient 32,000-Da fragment and then to two stable 23,000-Da and 12,000-Da fragments. The cleavage of the 32,000-Da fragment, however, can be blocked by bound Gpp(NH)p. The 32,000-Da fragment contains the Gpp(NH)p binding site and retains the ability to activate phosphodiesterase. These results indicate that the guanine nucleotide binding and rhodopsin binding sites are located in topologically distinct regions of the T alpha subunit and proved evidence that a large conformational transition of the molecule occurs upon the conversion of the bound GDP to GTP.  相似文献   

9.
We have compared the polypeptide products of the src gene of several strains of Rous sarcoma virus produced by in vitro translation of heat-denatured 70S virion RNA in the nuclease-treated reticulocyte lysate with those present in chick cells transformed by these viruses. We have done this by immunoprecipitation, using sera from rabbits injected at birth with Schmidt-Ruppin Rous sarcoma virus. In vitro translation results in the synthesis of at least nine polypeptides which appear to be encoded by the src gene. These range in size from 17,000 to 60,000 daltons. The sera from tumor-bearing rabbits precipitated these polypeptides arising from the in vitro translation of RNA from Schmidt-Ruppin Rous sarcoma virus of both subgroup A and subgroup D and from one stock of Prague Rous sarcoma virus of subgroup C. In each case, all of this family of related polypeptides could be precipitated except the smallest, the 17,000-dalton polypeptide. No precipitation of analogous polypeptides resulting from the translation of RNA from other strains of Rous sarcoma virus was observed. Cells transformed by these three strains of Rous sarcoma virus contain easily detectable amounts of a polypeptide, p60src, essentially identical to the 60,000-dalton in vitro product. With one exception, they do not contain significant amounts of polypeptides analogous to the smaller in vitro products which can be precipitated by these sera. Cells transformed by one stock of Schmidt-Ruppin Rous sarcoma virus of subgroup A did contain a 39,000-dalton polypeptide, which was related, by peptide mapping, to the 60,000-dalton polypeptide and was similar in size to a precipitable in vitro product. The 60,000-dalton polypeptide present in transformed cells appeared to be phosphorylated 10 to 25 min after its synthesis, metabolically very stable, and not derived from a precursor polypeptide. All immunoprecipitates from transformed cells which contained p60src also contained an 80,000-dalton phosphoprotein. This polypeptide is unrelated to p60src, as determined by peptide mapping, and may well be a host cell polypeptide which is specifically associated with p60src.  相似文献   

10.
The steroid hormone aldosterone regulates reabsorptive Na+ transport across specific high resistance epithelia. The increase in Na+ transport induced by aldosterone is dependent on protein synthesis and is due, in part, to an increase in Na+ conductance of the apical membrane mediated by amiloride-sensitive Na+ channels. To examine whether an increment in the biochemical pool of Na+ channels expressed at the apical cell surface is a mechanism by which aldosterone increases apical membrane Na+ conductance, apical cell-surface proteins from the epithelial cell line A6 were specifically labeled by an enzyme-catalyzed radioiodination procedure following exposure of cells to aldosterone. Labeled Na+ channels were immunoprecipitated to quantify the biochemical pool of Na+ channels at the apical cell surface. The activation of Na+ transport across A6 cells by aldosterone was not accompanied by alterations in the biochemical pool of Na+ channels at the apical plasma membrane, despite a 3.7-4.2-fold increase in transepithelial Na+ transport. Similarly, no change in the distribution of immunoreactive protein was resolved by immunofluorescence microscopy. The oligomeric subunit composition of the channel remained unaltered, with one exception. A 75,000-Da polypeptide and a broad 70,000-Da polypeptide were observed in controls. Following addition of aldosterone, the 75,000-Da polypeptide was not resolved, and the 70,000-Da polypeptide was the major polypeptide found in this molecular mass region. Aldosterone did not alter rates of Na+ channel biosynthesis. These data suggest that neither changes in rates of Na+ channel biosynthesis nor changes in its apical cell-surface expression are required for activation of transepithelial Na+ transport by aldosterone. Post-translational modification of the Na+ channel, possibly the 75,000 or 70,000-Da polypeptide, may be one of the cellular events required for Na+ channel activation by aldosterone.  相似文献   

11.
Thyroxine-binding globulin was isolated from human plasma by ammonium sulfate fractionation, chromatographic separations on diethylaminoethyl-Sephadex, gel chromatography, and two different electrophoretic procedures. The highly purified was homogeneous when subjected to polyacrylamide gel electrophoresis, ultracentrifugation analyses, and immunochemical determinations. The weight average molecular weight as determined by sedimentation equilibrium ultracentrifugations was 54,000 and by sedimentation diffusion data 55,000. Amino acid analyses indicated a minimum of 110 amino acid residues per molecule. By determination of the minimum in the curve for the fraction of maximum deviation from the amino acid analyses it was found that the minimum molecular weight for the polypeptide was 12,200. Carbohydrate analyses demonstrated the presence f equimolar amounts of amnnose, galactose, and glucosamine, and the carbohydrate portion constituted 7.5% of the total weight. The amino acid analyses suggested that thyroxine-binding globulin is composed of 4 subunits. Molecular weight determinations by gel chromatography in 6 M guanidine hydrochloride indicated the presence of three species of globulin with apparent molecular weights 52,000, 25,000, and 13,500, respectively. Prolonged storage in guanidine hydrochloride promoted a more than 60% yield of the monomeric species. Moreover, a half-molecule of thyroxine-binding globulin was isolated and shown to consist of two polypeptide chains of similar molecular weight...  相似文献   

12.
Bovine freeze-thaw lysed platelets were fractionated by dextran sulfate affinity chromatography and a purified protein of 23,000 Da was subsequently obtained by G-75 gel filtration of the 0.5 M NaCl fraction. This protein had an amino terminal sequence of Asn-Arg-Ile-Pro-Glu-Ser-Gly-Gly-Asp-Asn-Ser-Val-Phe-Asp-Ile-Phe-Glu-Leu- Thr-Gly-Ala-Ala-Trp-Lys-, a sequence identical to that reported for human thrombospondin. Thrombin-released platelets, fractionated in an identical manner, yielded a protein of 30,000 Da. Immunoblotting of purified bovine platelet thrombospondin and the 150,000- and 30,000-Da plasmin-generated thrombospondin fragments indicated that polyclonal antisera raised against the 23,000-Da protein cross-reacted with intact thrombospondin and the 30,000-Da fragment but not the 150,000-Da fragment. The 23,000-Da protein possessed weak heparin neutralization activity.  相似文献   

13.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

14.
The molecular organization of the protein HC-IgA complex (HC-IgA)   总被引:5,自引:0,他引:5  
Complexes of protein HC and monoclonal IgA1 or IgA2 or polyclonal IgA were isolated from human blood plasma. Dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting showed that all complexes contain three types of chains: two light immunoglobulin chains, one regular IgA alpha-chain, and one chain with Mr = 90,000 carrying both alpha-chain and protein HC epitopes. The complexes were split into Fab alpha and Fc alpha fragments by bacterial IgA proteases. The protein HC epitopes were linked to the Fc fragments. Complexes of protein HC and an alpha-chain devoid of the variable region and the first heavy chain constant domain could also be demonstrated to be present in the blood plasma of a patient with alpha-heavy chain disease. Pepsin digestion of HC-IgA released a fragment containing all the protein HC epitopes and the C-terminal nonapeptide of the IgA alpha-chain. The light immunoglobulin chains, the regular alpha-chain, and the 90,000-Da chain from monoclonal HC-IgA1 were isolated by preparative dodecyl sulfate-polyacrylamide gel electrophoresis and by repeated gel filtration in dodecyl sulfate-containing buffer. The N-terminal amino acid sequence of the alpha-chain was identical with that of a regular human heavy immunoglobulin chain of subgroup III. Subtractive degradations of the 90,000-Da chain displayed 2 amino acid residues in each position in a pattern suggesting simultaneous degradations of a chain identical with the regular alpha-chain of HC-IgA and of uncomplexed, low molecular weight, protein HC. All the results are compatible with a model for HC-IgA in which a single low molecular weight protein HC polypeptide chain is covalently linked, side by side, to the C-terminal nonapeptide of one of the two alpha-chains of a regular monomeric IgA unit.  相似文献   

15.
The structure of prekeratin   总被引:7,自引:0,他引:7  
The subunit of epidermal prekeratin has been shown to consist of three polypeptide chains. One of these has a molecular weight of 72,000 and two have molecular weights of 60,000, giving a total subunit molecular weight of 192,000. The prekeratin molecule, examined by ultracentrifugation, appears monodisperse and has a molecular weight of about 375,000 which is twice the subunit weight. It is concluded that prekeratin consists of a pair of three-stranded subunits and that this dimer is most probably of physiological significance, being a building block of epidermal filaments (“α-keratin”).  相似文献   

16.
CHEMICAL CHARACTERIZATION OF ISOLATED EPIDERMAL DESMOSOMES   总被引:19,自引:17,他引:2       下载免费PDF全文
Desmosomes, isolated from cow nose epidermis by a method utilizing citrate buffer pH 2.6 and density gradient centrifugation, have been analyzed and found to contain approximately 76% protein, 17% carbohydrate, and 10% lipid. Nonpolar amino acids predominate in desmosomal protein, representing 456 residues per 1,000. The sialic acid content is 5 nM/mg of protein. The lipid fraction is composed of approximately 40% cholesterol and 60% phospholipids. Desmosomes are completely solubilized by incubation with 2% sodium dodecyl sulphate and 1% β-mercaptoethanol. Gel electrophoresis of the denatured desmosomal proteins reveals 24 bands, with mobilities corresponding to a molecular weight range of 15,000–230,000 daltons. Seven of these are considered to be major bands, together constituting 81% of the desmosomal protein. Bands 1 and 2, of molecular weights 230,000 and 210,000 daltons, together comprise 28% by weight of the desmosome. It is suggested that these protein chains are located in the desmosomal plaque. Bands 3 and 4 are PAS-positive, constitute 23% of the desmosomal protein, and have apparent molecular weights of 140,000 and 120,000 daltons, respectively. At least part of this material must originate from the carbohydrate-containing layer which is demonstrated, by histochemistry, to be present in the desmosomal interspace. The possible nature and origin of the remaining major bands, of molecular weights 90,000, 75,000, and 60,000 daltons, are discussed.  相似文献   

17.
Utilizing a combination of conventional and affinity-chromatographic procedures, we have purified four fragments of human albumin that were generated by controlled limited proteolysis with pepsin [0.3 mM albumin; 37°C; 10 min; pH 3.51; 4.2 mM octanoate; pepsin/albumin, 1:1000 (w/w)]. These fragments have a molecular weight range of 9200-17,000 Da. Amino acid compositions, N- and C-terminal sequences, molecular weights, and other internal markers were used to determine the location of these fragments within the parent molecule. All of the fragments were shown to be derived from the C-terminal half of human albumin. The presence of multiple pepsin-sensitive bonds near the C terminus of each fragment complicated the assignment of specific residue numbers to each fragment. Two pairs of similar peptides were identified: (A) those corresponding to a single-loop structure (residues 309–380 and 309–387) and (B) those containing multiple loops and intraloop cleavages [residues 309–(491–495) with 408–423 deleted]. Purification of these fragments without disulfide bond reduction confirms portions of the loop structure of human albumin and demonstrates increased susceptibility of two specific regions of the C-terminal half of the molecule to peptic digestion.  相似文献   

18.
Pregnancy-associated plasma protein-A (PAPP-A) has been purified by a combination of methods including antibody-affinity chromatography. The resultant protein, obtained in 16% yield from maternal serum, appeared as a single major component on non-denaturing polyacrylamide and SDS/polyacrylamide gel electrophoresis. The protein showed a single component when analysed by isoelectric focusing under denaturing conditions in the presence and absence of reduction and had a pI of 4.34 and 4.42 respectively. These pI values were indistinguishable from those of alpha 2-macroglobulin (alpha 2M). The molecular weight of the PAPP-A polypeptide as shown by SDS/polyacrylamide-gel electrophoresis was 187000, with a minor component of mol.wt. 82500 that was attributed to proteolysis. Since native PAPP-A had a molecular weight on gel chromatography very similar to that of alpha 2M (620000--820000), it was concluded that PAPP-A was a homotetramer. In the absence of reduction, a high-molecular-weight (420000) protomer of PAPP-A was found. It was deduced that PAPP-A, like alpha 2M, is a dinner, whose protomers are composed of disulphide-linked polypeptide chains. It was found that the molecular weight of the PAPP-A polypeptide exceeded that of alpha 2M by 3.3%, but that the total carbohydrate content of PAPP-A exceeded that of alpha 2M by 10% and that its neutral carbohydrate content exceeded that of alpha 2M by between 7.4 and 9.0%. The significance of the estimated molecular weights of alpha 2M (181000) and its major tryptic fragments is discussed in the light of published values. A tryptic fragment alpha 2M (82500 mol.wt.) was apparently the same size as the major tryptic fragment of PAPP-A.  相似文献   

19.
A structural model of human erythrocyte protein 4.1   总被引:29,自引:0,他引:29  
Limited proteolysis and specific chemical cleavage methods have enabled a detailed structural characterization of human erythrocyte protein 4.1. This protein is composed of two chemically very similar polypeptide chains (a and b) with apparent molecular masses of 80,000 and 78,000 daltons. Cleavage of protein 4.1 at cysteine residues by 2-nitro-5-thiocyanobenzoic acid produces a series of doublets which differ by approximately 2,000 daltons and have identical peptide maps. Alignment of these peptides by mapping analysis has localized 4 cysteine residues within a 17,000-dalton segment on both a and b polypeptides. Mild chymotryptic treatment at 0 degrees C cleaves protein 4.1 primarily in three central locations and generates two families of unrelated peptides. Analysis of these fragments in two-dimensional gels and by peptide mapping reveals an unusual polarity in protein 4.1 structure in that each polypeptide chain contains two segments, one relatively acidic the other basic, that are segregated at opposite ends of the molecule. The basic region is digested into a cysteine-rich 30,000-dalton domain which resists further breakdown while the acidic region is readily degraded into smaller fragments. The peptides derived from the acidic region all appear as doublets suggesting that protein 4.1 a and b polypeptides differ close to the terminus of the acidic end. Similar phosphorylation sites occur on both polypeptides within a segment some 24,000-34,000 daltons from the acidic terminus.  相似文献   

20.
1. Procedures are described for the isolation of seven distinct cyanogen bromide fragments in high yield from human serum transferrin. 2. Cyanogen bromide-cleaved transferrin is separated into three fragments (CN-A, CN-B and CN-C) by gel filtration with Sephadex G-100. 3. Four peptides are obtained from CN-A (the largest fragment) after reduction and carboxamidomethylation, by gel filtration in acidic solvents. Two peptides are similarly obtained from fragment CN-B, whereas fragment CN-C is a single cystine-free peptide. 4. The molecular weights of the seven peptides, as determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, by sedimentation-equilibrium ultracentrifugation and by sequence studies, range from 3100 to 27000. Together they account for a molecular weight of 76200 for transferrin. 5. The two largest fragments contain the carbohydrate attachment sites of the protein, and the smallest fragment is derived from the N-terminus. 6. The amino acid compositions and N-terminal groups of the fragments are reported and the results compared with those of previous investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号