首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The LD50 for larvae of Trichoplusia ni injected with blastospores of Nomuraea rileyi was 4.30 ± 1.16 hyphal bodies/larva; the LD50 for injected conidia was ca. 25,000 conidia/larva. The dose-mortality regression line for blastospores was Y = 4.6504 + 0.5487 X. Larval mortalities of Anticarsia gemmatalis and T. ni at 100 blastospores/larva were 0.4 ± 0.5% and 96.7 ± 1.9%, respectively. At a dosage of 25,000 conidia/larva, larval mortalities for A. gemmatalis and T. ni were 0.4 ± 0.5% and 43.1 ± 8.7%, respectively. Thus, larvae of A. gemmatalis were > 100 times and >200 times more resistant to injected conidia and blastospores, respectively, than were larvae of T. ni. Resistance of A. gemmatalis to N. rileyi may not be solely at the integumental barrier, as is often believed, but may also be a function of an internal physiological response.  相似文献   

2.
The dosage-mortality response of Hyphantria cunea larvae to a granulosis virus isolated from Diacrisia virginica was studied. Serial decimal dilutions of the D. virginica granulosis virus were fed to early second-instar H. cunea larvae. the LD50 for this virus (7.9 × 105 capsules/larva) was significantly greater than the LD50 calculated for the H. cunea granulosis virus (7.06 × 104 capsules/larva) against the same instar of H. cunea. Time mortality studies demonstrated that the LT50 values for the D. virginica granulosis were four to six times greater than for comparable dosages of H. cunea granulosis virus. Based on the mortality response of assayed H. cunea, it is possible to distinguish between the D. virginica granulosis virus and the H. cunea granulosis virus.  相似文献   

3.
The relative susceptibility of third- and fourth-instar Malacosoma neustria larvae to a nucleopolyhedrosis virus was studied by bioassay in the laboratory. Larval mortality increased with increased dosage, whereas the dosage-incubation relationship was reversed. Larval age inversely affected mortality and incubation. The computed LD50's for third- and fourth-instar larvae were 1,405 and 12,320 polyhedral inclusion bodies (PIB's)/larva. The median lethal doses calculated as number of PIB's/mg body weight showed that third-instar larvae were only twice more susceptible to virus than fourths. The LT50 values for 3 × 105, 3 × 104, and 3 × 103 PIB's/larva were 5.9, 6.58, and 8.15 days, respectively, in third-instar assay; the corresponding figures for the two highest concentrations were 9.3 and 10.7 days in the older larvae. Lethally infected individuals died after one or, exceptionally, two molts. No correlation was found between pupal weight or adult emergence of survivors and the virus dose administered to the larvae.  相似文献   

4.
Third-instar Spodoptera exempta larvae were fed on young maize leaves treated with 20 μl of polyhedral inclusion body (PIB) suspension of concentrations that varied from 1.6 × 102 to 1.6 × 109 PIBs/ml. Daily observations were kept on mortality rates. A probit analysis on the results gave an LD50 value of 48.4 PIBs/larva (lower and upper fiducial limits 39.2 and 59.4 PIBs/larva, respectively), and an LT50 that varied from 146.2 to 221.3 hr, depending on the dosage. LD and LT values obtained show the high pathogenicity of S. exempta nuclear polyhedrosis virus to its host.  相似文献   

5.
《Journal of Asia》2007,10(2):151-155
The susceptibility of Spodoptera litura to SlMNPV infection was markedly affected by phyto-chemicals ingested during the acquisition of viral inoculum on foliage of tomato and cauliflower. The LD50 values computed for second, third and fourth instar larvae assayed on tomato leaves were 254, 819 and 23395 PIBs/larva, respectively whereas, it was 326, 1719 and 43843 PIBs/larva for respective instars when assayed on cauliflower leaves. Thus LD50 values for second, third and fourth instar larvae were 1.28-, 2.09- and 1.87- fold lower, respectively in tomato leaves. Similarly, LT50 values for second, third and fourth instar larvae assayed on tomato leaves were 7.1 and 7.5 days, respectively at inoculum dose of 2.7×104 PIBs/larva whereas, it was 7.7 and 8.0 days for respective instars when assayed on cauliflower leaves at same inoculum. This result also showed that the S. litura were more susceptible on tomato leaves in comparison to cauliflower leaves as the time required for mortality was lower in tomato leaves. The possible biochemical bases for differential level of mortality of S. litura larvae on tomato and cauliflower crops needs to be investigated.  相似文献   

6.
R. J. Milner 《BioControl》1973,18(3):305-315
The pathogenicity ofNosema whitei was studied using a dose-mortality technique; larvae ofTribolium castaneum were reared for the duration of each experiment in flour mixed with known numbers of spores. The susceptibility of each of the first 5 larval instars was compared. The LD50 (for mortality after 20 days) increased consistently from the first instar (1.8×106 spores/g) to the fifth instar (1.0×1010 spores/g). The slopes of the probit lines increased consistently as age increased (from b=1.1 to b=3.9). Two factors which reduce the development time ofT. castaneum, high temperature and high humidity, both reduced the pathogenicity ofN. whitei. Thus pathogenicity decreased as the temperature was increased fram 25°C (LD50=4.2×106) through 30°C (LD50=1.3×107) to 35°C (LD50=3.2×106), also pathogenicity decreased consistently as humidity was increased fram 10%, through 30, 50, 70% to 90% R.H. Adults, emerging fromNosema free larvae, became infected only when exposed to a very high dose (2×1010 spores/g for 14 days from the day of emergence). Infected larvae were treated for 1 hr. at 45°C in an attempt to cure the infection. The infected larvae were not cured, rather the treatment had an adverse alfect on their survival.
Résumé La pathogénicité deNosema whitei a été étudiée en élevant des larves deT. castaneum dans de la farine mélangée à des quantités connues de spores. La sensibilité des larves diminue uniformément en fonction de l'age; La DL50 varie de 1,8×106/g (1er stade) à 1,0×1010 spores/g (5e stade). Deux facteurs, qui accélèrent le développement deT. castaneum, des températures et des humidités élevées, réduisent tous les deux la pathogénicité deN. whitei. Les adultes ne peuvent être infectés qu'en les exposant à la dose extrêmement élevée de 2×1010 spores/g. Un traitement par la chaleur (45°C pendant une heure) n'a pas réussi à guérir les larves.


This work financed by a Science Research Council (U.K.) studentship is based on a thesis submitted for a degree of Ph. D. at the University of Newcastle-upon-Tyne.  相似文献   

7.
Host-pathogen relationships were studied between the pink bollworm, Pectinophora gossypiella, and a cytoplasmic polyhedrosis virus (CPV). Results showed that the median effective dose (ED50), the dose that infects half the test subjects, was 1.91 × 102 polyhedral inclusion bodies (PIB)/ml of diet. The median lethal dose (LD50) was 1.72 × 105 PIB/ml. Diagnosis for CPV infection was more reliable in adult pink bollworms than in late-instar larvae. Duration of the larval stage increased with viral dose, but duration of the pupal stage was not affected by CPV. Weights of infected male and female pupae were 23.7 and 24.0% less than those of untreated pupae, respectively. Pupal weights were not significantly influenced by increases in the viral dose. Weights of larvae of a given age decreased as dose increased. The effect of CPV on duration of the immature stages and on pupal weight was not significantly influenced by rearing temperatures between 25.0° and 32.5°C. Pupal weight of infected pink bollworms decreased as the duration of the larval stage increased.  相似文献   

8.
Observations, linear measurements, dissections, and histological preparations were made of parasitized and nonparasitized larvae of the alfalfa weevil,Hypera postica (Gyllenhal), on a daily basis. The observed developmental period lasted from 24 h after oviposition byBathyplectes curculionis (Thomson) orBathyplectes anurus (Thomson) until parasite larvae emerged from their hosts. Adult and larval parasites significantly altered growth and development ofH. postica larvae.B. curculionis andB. anurus caused 24 and 29% greater premature mortality in young host larvae than that observed in the unparasitized controls. Rate of development for parasitized larvae during the 1st 12 days was essentially the same as for nonparasitized larvae. Nonparasitized larvae reached maximum size in 17–18 days, whereas larvae parasitized byB. curculionis andB. anurus required 14–21 and 19–22 days, respectively. Larvae parasitized byB. curculionis are smaller in overall lengths, widths and head capsule widths than nonparasitized larvae and those parasitized byB. anurus.  相似文献   

9.
The susceptibility of Heliothis armiger larvae of different ages to a commercial nuclear polyhedrosis virus (NPV), Elcar, was determined by bioassay. The median lethal dosage (LD50) increased 150-fold during the first week of larval life at 25°C, i.e., during development to early fourth instar, but daily feeding rate and thus potential virus acquisition also increased. A linear relationship was determined between log LD50 and larval length, indicating that larval length constitutes a useful index for estimating the susceptibility of larval populations. Median lethal times (LT50s) were similar for larvae tested at ages of 0 to 7 days and ranged from 3.6 to 8.0 days at 30°C. The amount of virus produced in a single, infected neonate was equivalent to 1.4 × 106 LD50s for neonates, a 900,000-fold increase on the dose supplied. The data support the practice of directing the NPV against neonates, but, on the basis of larval susceptibility alone, the age of larvae at treatment may not always be critical.  相似文献   

10.
Two methods of infection, i.e., feeding known numbers of spores and rearing larvae in contaminated peat, were used to bioassay the susceptibility of Rhopaea verreauxi to Bacillus popilliae var. rhopaea at 23°C. The susceptibility of the three larval instars was similar as measured by the ID50 and IC50 values. However, within an instar, newly molted larvae were less susceptible than mature larvae when infected by the contaminated peat method. It is suggested that this was due to reduced food intake. The range of ID50 values for all bioassays with R. verreauxi larvae were 1.1 × 107 to 4.0 × 107 spores per larva, and IC50 values were 3.4 × 106 to 5.0 × 107 spores per g of contaminated peat. The slope of the probit line was always low (0.6 to 1.8) except for young first-instar larvae infected by contaminated peat when the slope was 4.0. Disease per se did not affect food intake, though intake was reduced at high doses of contaminated peat. Young larvae often died without developing symptoms but, with increasing age, infected larvae were more likely to develop symptoms. Bioassays with Othnonius batesi and Rhopaea morbillosa indicated a much lower susceptibility per os than for R. verreauxi. It is concluded that the potential for using B. popilliae var. rhopaea to control R. verreauxi is high, but the bacillus is unlikely to be of value in control of O. batesi or R. morbillosa.  相似文献   

11.
The baculovirus–insect expression system is a popular tool for recombinant protein production. The standard method for infecting insect larvae with recombinant baculovirus for protein production involves either feeding occlusion bodies or injecting budded virus into the cuticle. In this study, we showed that the recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) at titers >108 pfu/mL efficiently infected Trichoplusia ni (T. ni) larvae through aerosol inoculation of budded virus at a pressure of 5.5 × 104 Pa. The dipping T. ni larvae in virus‐containing solution efficiently infected them. These results indicate that surface contamination, either by aerosol or dipping, lead to infection via spiracles. The aerosol infection route for AcMNPV was restricted to T. ni and Plutella xylostella larvae, whereas Spodoptera litura and Helicoverpa armigera larvae were resistant to this inoculation process. The yields of the reporter proteins DsRed and EGFP from T. ni larvae following aerosol infection were nearly identical to those following oral feeding or injection. This alternative baculovirus infection strategy facilitates recombinant protein and virus production by insect larvae. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Bioassay of a nucleopolyhedrosis virus of the gypsy moth, Porthetria dispar   总被引:1,自引:0,他引:1  
The pathogenicity of an American isolate of the nucleopolyhedrosis virus of Porthetria dispar was studied. Laboratory data on third-instar larvae showed that mortality was directly related to virus concentration. The computed LD50 was 1,729 PIBs/larva or 72 PIBs/mg larval body weight. The LT50's for 2.5 × 106, 2.5 × 105, 2.5 × 104, 5 × 103, and 2.5 × 103 PIBs/larva were 8.1, 9.9, 11.3, 12.2, and 13.1 days, respectively. Approximately 37 and 60% of the total larval mortality occurred during the third- and fourth-instar, respectively. The periods to pupation and the pupal weights of survivors apparently were not affected by virus concentration. Moth emergence from surviving pupae was not reduced.  相似文献   

13.
Four 3-alkylthio-1,1,1-trifluoro-2-propanones with juvenile hormone-like side chains were prepared from citronellol and homogeraniol. These substrates were designed as possible transition-state analogs for the juvenile hormone (JH)-specific esterases present in insects. These four isoprenoid trifluoromethyl ketones were assayed in vitro with JH esterase and general esterases from larvae of the cabbage looper, Trichoplusia ni (Lepidoptera, Noctuidae), and with eel acetylcholinesterase and bovine chymotrypsin. JH esterase inhibition I50 values were in the nanomolar range for all four compounds, while the other esterases had I50'S which were 103 to 105 higher. The high selectivity of these inhibitors is believed to be due to their similarity in size and functionality to natural JH III. Treatment of T. ni larvae in vivo with solutions of the most active analog, 3-[(E)-4,8-dimethyl-3,7-nonadienylthio]-1,1,1-trifluoro-2-propanone (DNTFP) causes a dose-dependent delay in pupation and a concurrent selective inhibition of JH esterase. These data support the hypothesis that the reduction in in vivo JH titer in larval T. ni is due, in part, to hydrolysis of the hormone by selective esterases. DNTFP appears to be competing with JH for the active site of JH esterase.  相似文献   

14.
Oncopeltus fasciatus tolerated 1954× and 7288×, respectively, the LD50 ouabain dose of Schistocerca gregaria and Periplaneta americana when ouabain was injected into the haemocoel of these insects. The maximal ouabain dose that could be injected into O. fasciatus (200 nmol) resulted in no mortality; this dose is higher than the lethal ouabain doses recorded for vertebrates and invertebrates. The ouabain concentration resulting in 50% inhibition (I50) of Na,K-ATPase activity was determined in lyophilates of nervous tissue of O. fasciatus and brain and recta of S. gregaria and were 2.0 × 10−4, 2.0 × 10−6 and 1.0 × 10−6 M, respectively. The I50 value for ouabain inhibition of Na,K-ATPase activity in the nervous tissue of O. fasciatus is higher than the I50 values for nervous tissue in most other insects as well as many other invertebrate and vertebrate tissues. Thus, the presence of ouabain-resistant Na,K-ATPases appears to be a factor in the tolerance and sequestration of plant cardenolides in O. fasciatus.  相似文献   

15.
Antonospora locustae is a microsporidian parasite of grasshopper insects that is used as a biological control agent. We report on laboratory selection of isolates from different regions with increased virulence. Bioassays were conducted against third instar nymphs of Locusta migratoria manilensis. AL2008L01 was originally imported from the USA in 1986, AL2008M01 was isolated from Melanoplus differentialis in USA and AL2008F01 was isolated from infected Fruhstorferiola tonkinensi collected in Guangdong, China. The results showed that all three isolates can infect the locust and that pathogenicity increased gradually with increased dose. The LD50 values of the original isolates at the highest dose (5×106 spores/nymph) were 19, 23 and 22 days and LD50 values were 3.2×105, 3.4×106 and 0.7×106 spores/g, respectively. After selecting for three generations, the virulence of all isolates increased significantly. LT50s were reduced to 17, 20 and 21 days at the highest dose (5×106 spores/nymph) and LD50s were reduced to 1.4×105, 2.5×105 and 1.7×105 spores/g.  相似文献   

16.
A relatively fast and simple peroral technique for the bioassay of insect viruses is described in which newly hatched larvae ingest a uniform volume of virus suspension. Three isolates of the Autographa californica nuclear polyhedrosis virus (NPV) and one isolate of the Heliothis zea NPV were used to test the procedure with Trichoplusia ni and H. zea larvae, respectively. Within-assay and between-assay variation was very low with coefficients of variation averaging 0.012 ± 0.006 and 0.20 ± 0.04 for time-mortality and dose-mortality tests, respectively. The synchronous uptake of virus removed the acquisition-time component of the LT50 values while the constant volume improved the accuracy of LD50 values. The procedure was shown to be suitable for a wide variety of lepidopterous species, including Spodoptera frugiperda, S. eridania, Estigmene acrea, Plutella xylostella, Choristoneura fumiferana, Ostrinia nubilalis, Plodia interpunctella, and Pieris rapae.  相似文献   

17.
Considering the rapid transmission of the dengue virus, substantial efforts need to be conducted to ward-off the epidemics of dengue viruses. The control effort is depending on chemical insecticides and had aroused undesirable conflicts of insecticide resistance. Here, we study the entomopathogenic fungus, Metarhizium anisopliae as a promising new biological control agent for vector control. The pathogenicity effects of Metarhizium anisopliae against field and laboratory strains of Aedes albopictus and Aedes aegypti larvae were tested using the larvicidal bioassay technique. The results demonstrate that the treatments using M. anisopliae isolate MET-GRA4 were highly effective and able to kill 100% of both Ae. albopictus and Ae. aegypti mosquito larvae at a conidia concentration of 1 × 10?/ml within 7 days of the treatment period. The fungus displayed high larvicidal activity against laboratory and field strain of Ae. aegypti larvae with LC50 values (9.6 × 103/ml, 1.3 × 103/ml) and LC95 values (1.2 × 10?/ml, 5.5 × 105/ml) respectively. For Ae. albopictus, LC50 values for laboratory and field strains were (1.7 × 104/ml, 2.7 × 104/ml) and the LC95 values were (2.1 × 10?/ml, 7.0 × 105/ml) respectively. Interestingly, the susceptibility of field strain towards M. anisopliae was higher as compared to the laboratory strain Aedes larvae. In which, the causative agents of all the dead larvae were verified by the virulence of M. anisopliae and caused morphological deformities on larval body. The findings from this study identify this isolate could be an effective potential biocontrol agent for vector mosquitoes in Malaysia.  相似文献   

18.
《Journal of Asia》2022,25(2):101880
Bioassays to evaluate the mortality, virulence and reproduction potentials of four indigenous EPN strains, S-PQ16, S-BM12, H-KT3987 and H-CB3452 on insect larvae of mealworm (Tenebrio molitor) and greater wax moth (Galleria mellonella) revealed the highest mortality rates of two insect larvae at the highest inoculation dose of 100 IJs to range from 89 to 100 percent and 94.3–100 percent at 48 h after inoculation, respectively. Virulence was high for all nematode strains, with LC50 values between 29.6 and 47.3 IJs/insect host. The highest IJ yields were different between nematode strains and insect host, from 66.8 × 103 IJs (S-PQ16) to 118.6 × 103 IJs (H-KT3987) on T. molitor, and from 54.2 × 103 IJs (S-BM12) to 163.3 × 103 IJs (H-KT3987) on G. mellonella. The culturing cost in terms of food expenditure for rearing insect larvae varied between insect larvae and nematode strains, from 6.76 to 26.63 USD per billion IJs for nematode strains cultured on T. molitor larvae and from 3.54 to 7.81 USD per billion IJs for nematode strains cultured on G. mellonella larvae. The full cost for a nematode product of 2.5 × 109 IJs per hectare, produced through in vivo mass culturing, of the most efficient nematode strain, H-KT3987, was 191.3 USD, slightly cheaper than 199.4 USD for the same nematode product produced through in vitro mass culturing.  相似文献   

19.
Summary A clone of the wild type (wt) Anticarsia gemmatalis multiple nuclear polyhedrosis virus AgMNPV, derived from a geographical isolate (Hondrina, Brazil) and designated AgMNPV-CL4-3A1, was used to determine the host range of this virus in six established lepidopteran cell lines: Anticarsia gemmatalis (BCIRL-AG-AM1), Helicoverpa zea (BCIRL-HZ-AM1), Heliothis virescens (BCIRL-HV-AM1), Helicoverpa armigera (BCIRL-HA-AM1), Trichoplusia ni (TN-CL1), Bombyx mori (BMN), and a coleopteran cell line Anthonomus grandis (BRL-AG-1). In addition, the in vivo host range of this clone was also assayed in larvae of Helicoverpa zea, Heliothis virescens, Trichoplusia ni, and the homologous species Anticarsia gemmatalis by probit analysis. On the basis of temporal studies of TCID50 values, BCIRL-HV-AM1 cells gave the highest extracellular virus (ECV) titer (9.7×106 TCID50/ml) followed by BCIRL-HA-AM1 cells (8.3×105 TCID50/ml) and BCIRL-AG-AM1 cells (3.2×105 TCID50/ml). In addition, a low ECV titer of 1.37×103 TCID50/ml was detected from TN-CL1 cells 96 h postinoculation, while BRL-AG-1, BMN, and BCIRL-HZ-AM1 cells were nonpermissive to AgMNPV-CL4-3A1 on the basis of TCID50 results. AgMNPV-CL4-3A1 and the wild type AgMNPV had similar restriction profiles that were different from wild type AcMNPV. The LC50 values were 96.9, 564.6, 733.3, and 1.1×104 occlusion bodies/cm2 of diet for A. gemmatalis, Helicoverpa zea, Heliothis virescens, and T. ni, respectively. This article presents the results of research only. Mention of proprietary products in this article does not indicate endorsement or a recommendation for use by USDA-ARS. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status or handicap.  相似文献   

20.
Variations in the resistance to nuclear polyhedrosis virus (NPV) were found in three populations of Spodoptera littoralis. The LD50 for the most resistant population was 1.07 × 104 PIB/5th instar larva as compared to 8.4 × 102 and 5.8 × 102 PIB/larva in the other two populations. The effect of NPV persisted in larvae which survived and pupated. Some of the pupae died, and those which survived produced normally shaped adults. While fecundity was sharply reduced in the less resistant populations, the effect on the most tolerant population was less pronounced. A 3-year-old inoculum, stored unprotected from daylight and without cooling, was much less effective even against the most sensitive larval population as compared to a relatively fresh and refrigerated batch. Larvae in their 6th instar proved to be approximately 10-fold more resistant to the NPV than 5th instar ones, while the difference in weight was only about twice. These variations in resistance to NPV are also discussed from the point of view of applying S. littoralis NPV in pest control schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号