首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ever since the early decades of this century, there have emerged a number of competing schools of ecology that have attempted to weave the concepts underlying natural resource management and natural-historical traditions into a formal theoretical framework. It was widely believed that the discovery of the fundamental mechanisms underlying ecological phenomena would allow ecologists to articulate mathematically rigorous statements whose validity was not predicated on contingent factors. The formulation of such statements would elevate ecology to the standing of a rigorous scientific discipline on a par with physics. However, there was no agreement as to the fundamental units of ecology. Systems ecologists sought to identify the fundamental organization that tied the physical and biological components of ecosystems into an irreducible unit: the ecosystem was their fundamental unit. Population ecologists sought, instead, to identify the biological mechanisms regulating the abundance and distribution of plant and animal species: to these ecologists, the individual organism was the fundamental unit of ecology, and the physical environment was nothing more than a stage upon which the play of individuals in perennial competition took place. As Joel Hagen has pointed out, the two schools were thus dividied by fundamentally different and irreconcilable assumptions about the nature of ecosystems.Notwithstanding these divisive efforts to elevate the image of ecology, the discipline remained in the shadows of American academia until the mid-1960s, when systems ecologists succeeded in projecting ecology onto the national scene. They did so by seeking closer involvement with practical problems: they argued before Congress that their approach to the theoretical problems of ecology was uniquely suited to the solution of the impending environmental crisis. With the establishment of the International Biological Program, they succeeded in attracting unprecedented levels of funding for systems ecology research. Theoretical population ecologists, on the other hand, found themselves consigned to the outer regions of this new institutional landscape. The systems ecologists' successful capture of the limelight and the purse brought the divisions between them and population ecologists into sharper relief — hence the hardening of the division of ecology observed by Hagen.45  相似文献   

2.
Teeth are central for the study of ecology, as teeth are at the direct interface between an organism and its environment. Recent years have witnessed a rapid growth in the use of teeth to understand a broad range of topics in living and fossil primate biology. This in part reflects new techniques for assessing ways in which teeth respond to, and interact with, an organism's environment. Long-term studies of wild primate populations that integrate dental analyses have also provided a new context for understanding primate interactions with their environments. These new techniques and long-term field studies have allowed the development of a new perspective-dental ecology. We define dental ecology as the broad study of how teeth respond to, or interact with, the environment. This includes identifying patterns of dental pathology and tooth use-wear, as they reflect feeding ecology, behavior, and habitat variation, including areas impacted by anthropogenic disturbance, and how dental development can reflect environmental change and/or stress. The dental ecology approach, built on collaboration between dental experts and ecologists, holds the potential to provide an important theoretical and practical framework for inferring ecology and behavior of fossil forms, for assessing environmental change in living populations, and for understanding ways in which habitat impacts primate growth and development. This symposium issue brings together experts on dental morphology, growth and development, tooth wear and health, primate ecology, and paleontology, to explore the broad application of dental ecology to questions of how living and fossil primates interact with their environments.  相似文献   

3.
4.
The role of fallback foods in shaping primate ranging, socioecology, and morphology has recently become a topic of particular interest to biological anthropologists. Although the use of fallback resources has been noted in the ecological and primatological literature for a number of decades, few attempts have been made to define fallback foods or to explore the utility of this concept for primate evolutionary biologists and ecologists. As a preface to this special issue of the American Journal of Physical Anthropology devoted to the topic of fallback foods in primate ecology and evolution, we discuss the development and use of the fallback concept and highlight its importance in primatology and paleoanthropology. AmJ Phys Anthropol 140:599–602, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

5.
Recent developments in landscape-level ecological modeling rest upon poorly understood behavioral phenomena. Surprisingly, these phenomena include animal movement and habitat selection, two areas with a long history of study in behavioral ecology. A major problem in applying traditional behavioral ecology to landscape-level ecological problems is that ecologists and behaviorists work at very different spatial scales. Thus a behavioral ecology of ecological landscapes would strive to overcome this inopportune differential in spatial scales. Such a landscape-conscious behavioral undertaking would not only establish more firmly the link between behavior and ecological systems, but also catalyze the study of basic biological phenomena of Interest to behaviorists and ecologists alike.  相似文献   

6.
Has the science of ecology fulfilled the promises made by the originators of ecological science at the start of the last century? What should ecology achieve? Have good policies for environmental management flowed out of ecological science? These important questions are rarely discussed by ecologists working on detailed studies of individual systems. Until we decide what we wish to achieve as ecologists we cannot define progress toward those goals. Ecologists desire to achieve an understanding of how the natural world operates, how humans have modified the natural world, and how to alleviate problems arising from human actions. Ecologists have made impressive gains over the past century in achieving these goals, but this progress has been uneven. Some sub-disciplines of ecology are well developed empirically and theoretically, while others languish for reasons that are not always clear. Fundamental problems can be lost to view as ecologists fiddle with unimportant pseudo-problems. Bandwagons develop and disappear with limited success in addressing problems. The public demands progress from all the sciences, and as time moves along and problems get worse, more rapid progress is demanded. The result for ecology has too often been poor, short-term science and poor management decisions. But since the science is rarely repeated and the management results may be a generation or two down the line, it is difficult for the public or for scientists to decide how good or bad the scientific advice has been. In ecology over the past 100 years we have made solid achievements in behavioural ecology, population dynamics, and ecological methods, we have made some progress in understanding community and ecosystem dynamics, but we have made less useful progress in developing theoretical ecology, landscape ecology, and natural resource management. The key to increasing progress is to adopt a systems approach with explicit hypotheses, theoretical models, and field experiments on a scale defined by the problem. With continuous feedback between problems, possible solutions, relevant theory and experimental data we can achieve our scientific goals.  相似文献   

7.
We currently face significant, anthropogenic, global environmental challenges and the role of ecologists in mitigating these challenges is arguably more important than ever. Consequently there is an urgent need to recruit and train future generations of ecologists, both those whose main area is ecology, but also those involved in the geological, biological and environmental sciences. Here we present the results of a horizon scanning exercise that identified current and future challenges facing the teaching of ecology, through surveys of teachers, students and employers of ecologists. Key challenges identified were grouped in terms of the perspectives of three groups: students, for example the increasing disconnect between people and nature; teachers, for example the challenges associated with teaching the quantitative skills that are inherent to the study of ecology; and society, for example poor societal perceptions of the field of ecology. In addition to the challenges identified, we propose a number of solutions developed at a workshop by a team of ecology teaching experts, with supporting evidence of their potential to address many of the problems raised. These proposed solutions include developing living labs, teaching students to be ecological entrepreneurs and influencers, embedding skills-based learning and coding in the curriculum, an increased role for learned societies in teaching and learning, and using new technology to enhance fieldwork studies including virtual reality, artificial intelligence and real-time spoken language translation. Our findings are focused towards UK higher education, but they should be informative for students and teachers of a wide range of educational levels, policy makers and professional ecologists worldwide.  相似文献   

8.
In response to growing concern about environmental problems ecologists have engaged in a variety of mission-oriented efforts in which they claim to have taken into account the objective of helping to solve environmental problems in their research strategies or research programmes. The significance of these efforts is evaluated here in terms of both the theoretical development of the field of ecology and its orientation towards social objectives.Three examples of mission-orientation are analyzed on the basis of a case-study of Dutch fresh-water ecology; (1) ecosystems research within the framework of the International Biological Programme; (2) landscape ecology, and (3) ecological research on the management of fresh-water resources. These examples demonstrate that in principle the scope of missionorientation in ecology can be broad. In Dutch fresh-water ecology, however, two specific approaches have become particularly institutionalized. The ecologists tended to opt either for theory-centered approaches close to the type of research carried out by ecologists developing the field regardless of any societal mission or for problem-centered approaches without much emphasis on theory development. Types of mission-orientation which can be placed between these extremes have been established only to a limited extent in Dutch fresh-water ecology.  相似文献   

9.
Ecologists and physiologists have used biophysical models toanswer questions and investigate hypotheses about animal biologyfor over 20 years, but many investigators do not use such techniquesbecause such modelling is perceived as an arcane art. Indeed,there is no magic strategy to allow all ecologists to modelany biophysical problem accurately by means of simple recipes.In practice, biophysical ecology depends heavily on mathematicaland engineering principles. But, it need not be impenetrable.Here we discuss relatively simple models that can be incorporatedinto many ecological studies. We also discuss some of the importantapproximations and assumptions inherent in our treatments ofradiative, convective, evaporative, and conductive heat transfer.In so doing, we hope to encourage the use of such models, andto engender an appreciation of when and under what conditionspredictions from such models are most likely to be misleading.Thus, we hope to help ecologists to get into and, hopefully,out of trouble in biophysical ecology.  相似文献   

10.
Since the 1990s, behavioural ecologists have largely abandoned some traditional areas of interest, such as optimal foraging, but many long-standing challenges remain. Moreover, the core strengths of behavioural ecology, including the use of simple adaptive models to investigate complex biological phenomena, have now been applied to new puzzles outside behaviour. But this strategy comes at a cost. Replication across studies is rare and there have been few tests of the underlying genetic assumptions of adaptive models. Here, I attempt to identify the key outstanding questions in behavioural ecology and suggest that researchers must make greater use of model organisms and evolutionary genetics in order to make substantial progress on these topics.  相似文献   

11.
Energy is a variable of key importance to a wide range of research in primate behavioral ecology, life history, and conservation. However, obtaining detailed data on variation in energetic condition, and its biological consequences, has been a considerable challenge. In the past 20 years, tremendous strides have been made towards non-invasive methods for monitoring the physiology of animals in their natural environment. These methods provide detailed, individualized data about energetic condition, as well as energy allocations to growth, reproduction, and somatic health. In doing so, they add much-needed resolution by which to move beyond correlative studies to research programs that can discriminate causes from effects and disaggregate multiple correlated features of the social and physical environment. In this review, I describe the conceptual and methodological approaches for studying primate energetics. I then discuss the core questions about primate feeding ecology, social behavior, and life history that can benefit from physiological studies, highlighting the ways in which recent research has done so. Among these are studies that test, and often refute, common assumptions about how feeding ecology shapes primate biology, and those that reveal proximate associations between energetics and reproductive strategies.  相似文献   

12.
13.
DeWreede  Robert E. 《Hydrobiologia》2004,512(1-3):1-10
Marine algal ecology today faces many of the same problems as ecology in general, e.g. lack of generality of experimental results, the difficulty of making long-term predictions, and an apparent lack of agreement as to what constitutes the proper or `acceptable' way of doing this particular component of science. These problems, if real, affect marine algal ecology everywhere but, in different geographical areas, specific problems also occur; science in parts of Asia has some problems different from those in other parts of the world. Since its inception, research in marine algal ecology has been motivated by many factors, ranging from traditional needs, to curiosity, to survival, to new technology, and economic needs. Each of these has shaped the questions that have been asked by, and the level of support society has been willing to supply to, ecology. For example the requisites of tradition pushed marine ecology to ask questions about food and ceremonial biota, and our fears today about loss of biota are pushing for answers to questions about the means of preserving biodiversity. The limitations of many marine ecological studies have been pointed out by different individuals. Their comments have been valuable in forcing us to examine what we are doing as marine ecologists, and how we are doing it. Ecology, and marine algal ecology with it, has been accused of carrying out small-scale studies that have no greater generality than the sites at which the studies were done, and of using statistical procedures that are wrong or inappropriate; also, there is disagreement within the ecological community of how to correct for these `faults'. Some of the problems arise due to the nature of our particular science, e.g. working with organisms with differing genetic makeup and sensitivity of experimental results to small changes in initial conditions. Other problems are more likely due to the individuals doing the science, e.g. an inability to be an `expert' on all areas of knowledge required for a modern ecologist (taxonomy, experimental design, data analysis, etc.), and perhaps an unwillingness to recognize that in some instances different methods of data analysis are applicable and valid. As ecologists, we must come to grip with these problems, both for the sake of our science, and for our own sake as practicing ecologists.  相似文献   

14.
Models play an important role in any mature science because they force us to make explicit our assumptions about how a phenomenon works and allow us to explore the way in which different variables influence a complex biological system. I review the principal kinds of models that could be used to study primate behavior and ecology: linear programming models, systems models, optimality models, stochastic dynamic programming models and agent-based simulation models. Although less use has been made of modelling in primatology than in some other areas of behavioral ecology, there is considerable scope for exploiting the predictive and explanatory power of models in the field.  相似文献   

15.
In the past decade, ecologists have witnessed vast improvements in our ability to collect animal movement data through animal-borne technology, such as through GPS or ARGOS systems. However, more data does not necessarily yield greater knowledge in understanding animal ecology and conservation. In this paper, we provide a review of the major benefits, problems and potential misuses of GPS/Argos technology to animal ecology and conservation. Benefits are obvious, and include the ability to collect fine-scale spatio-temporal location data on many previously impossible to study animals, such as ocean-going fish, migratory songbirds and long-distance migratory mammals. These benefits come with significant problems, however, imposed by frequent collar failures and high cost, which often results in weaker study design, reduced sample sizes and poorer statistical inference. In addition, we see the divorcing of biologists from a field-based understanding of animal ecology to be a growing problem. Despite these difficulties, GPS devices have provided significant benefits, particularly in the conservation and ecology of wide-ranging species. We conclude by offering suggestions for ecologists on which kinds of ecological questions would currently benefit the most from GPS/Argos technology, and where the technology has been potentially misused. Significant conceptual challenges remain, however, including the links between movement and behaviour, and movement and population dynamics.  相似文献   

16.
Phylogenetic comparative methods play a critical role in our understanding of the adaptive origin of primate behaviors. To incorporate evolutionary history directly into comparative behavioral research, behavioral ecologists rely on strong, well-resolved phylogenetic trees. Phylogenies provide the framework on which behaviors can be compared and homologies can be distinguished from similarities due to convergent or parallel evolution. Phylogenetic reconstructions are also of critical importance when inferring the ancestral state of behavioral patterns and when suggesting the evolutionary changes that behavior has undergone. Improvements in genome sequencing technologies have increased the amount of data available to researchers. Recently, several primate phylogenetic studies have used multiple loci to produce robust phylogenetic trees that include hundreds of primate species. These trees are now commonly used in comparative analyses and there is a perception that we have a complete picture of the primate tree. But how confident can we be in those phylogenies? And how reliable are comparative analyses based on such trees? Herein, we argue that even recent molecular phylogenies should be treated cautiously because they rely on many assumptions and have many shortcomings. Most phylogenetic studies do not model gene tree diversity and can produce misleading results, such as strong support for an incorrect species tree, especially in the case of rapid and recent radiations. We discuss implications that incorrect phylogenies can have for reconstructing the evolution of primate behaviors and we urge primatologists to be aware of the current limitations of phylogenetic reconstructions when applying phylogenetic comparative methods.  相似文献   

17.
“Ecological topology” has recently been highlighted as a “frontier of ecology,” yet the term “ecological topology” only occasionally appears in the literature. On the other hand, the term “topology” appears in a variety of publications in this and other ecologically oriented journals, but its use is varied and applied to a wide cross-section of ecological problems. These variable usages suggest that topology does not have a common meaning to all ecologists. Part of this confusion results from the fact that topological ways of seeing nature are both formally derived from mathematical origins, and informally derived from non-mathematical conceptualizations. Interestingly, parallels occur between both mathematically originated and conceptually originated topology with respect to object-oriented, network topologies (formally derived from Eulerian mathematics), and field-oriented, manifold topologies (formally derived from Poincaréian mathematics). Topological ways of understanding nature and addressing both theoretical and applied problems have served ecology well in the past, but this approach will be improved with a better, more unified understanding among ecologists as to the variety of meanings found and practiced in the science.  相似文献   

18.
Machine learning methods without tears: a primer for ecologists   总被引:1,自引:0,他引:1  
Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.  相似文献   

19.
This paper discusses problems associated with the use of optimality models in human behavioral ecology. Optimality models are used in both human and non-human animal behavioral ecology to test hypotheses about the conditions generating and maintaining behavioral strategies in populations via natural selection. The way optimality models are currently used in behavioral ecology faces significant problems, which are exacerbated by employing the so-called ‘phenotypic gambit’: that is, the bet that the psychological and inheritance mechanisms responsible for behavioral strategies will be straightforward. I argue that each of several different possible ways we might interpret how optimality models are being used for humans face similar and additional problems. I suggest some ways in which human behavioral ecologists might adjust how they employ optimality models; in particular, I urge the abandonment of the phenotypic gambit in the human case.  相似文献   

20.
In recent years, research on animal personality has exploded within the field of behavioral ecology. Consistent individual differences in behavior exist in a wide range of species, and these differences can have fitness consequences and influence several aspects of a species' ecology. In comparison to studies of other animals, however, there has been relatively little research on the behavioral ecology of primate personality. This is surprising given the large body of research within psychology and biomedicine showing that primate personality traits are heritable and linked to health and life history outcomes. In this article, I bring together theoretical perspectives on the ecology and evolution of animal personality with an integrative review of what we know about primate personality from studies conducted on captive, free‐ranging, and wild primates. Incorporating frameworks that emphasize consistency in behavior into primate behavioral ecology research holds promise for improving our understanding of primate behavioral evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号