首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups—legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity–productivity relationship.  相似文献   

2.
The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals (“phytometer” species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.  相似文献   

3.
Land use is a major driver of biodiversity loss in many taxa including species-rich invertebrate assemblages, but consequences for invertebrate-mediated processes are still little studied. We assessed invertebrate herbivory in 146 managed temperate grasslands across a broad range of land-use intensities in three regions of Germany. Average herbivory decreased with increasing land-use intensity independent of region from 1.3 to 0.4% leaf area assessed. Among grassland land-use practices, the frequency of mowing and the degree of fertilization decreased herbivory while the intensity of vertebrate grazing had no significant effect on invertebrate herbivory. Thus, grassland management not only affects the diversity and abundance of invertebrate assemblages but also the amount of leaf tissue consumed.  相似文献   

4.
Classic research on elevational gradients in plant–herbivore interactions holds that insect herbivore pressure is stronger under warmer climates of low elevations. However, recent work has questioned this paradigm, arguing that it oversimplifies the ecological complexity in which plant–insect herbivore interactions are embedded. Knowledge of antagonistic networks of plants and herbivores is however crucial for understanding the mechanisms that govern ecosystem functioning. We examined herbivore damage and insect herbivores of eight species of genus Ficus (105 saplings) and plant constitutive defensive traits of two of these species, along a rain forest elevational gradient of Mt. Wilhelm (200–2,700 m a.s.l.), in tropical Papua New Guinea. We report overall herbivore damage 2.4% of leaf area, ranging from 0.03% in Ficus endochaete at 1,700 m a.s.l. to 6.1% in F. hombroniana at 700 m a.s.l. Herbivore damage and herbivore abundances varied significantly with elevation, as well as among the tree species, and between the wet and dry season. Community-wide herbivore damage followed a hump-shaped pattern with the peak between 700 and 1,200 m a.s.l. and this pattern corresponded with abundance of herbivores. For two tree species surveyed in detail, we observed decreasing and hump-shaped patterns in herbivory, in general matching the trends found in the set of plant defenses measured here. Our results imply that vegetation growing at mid-elevations of the elevational gradient, that is at the climatically most favorable elevations where water is abundant, and temperatures still relatively warm, suffers the maximum amount of herbivorous damage which changes seasonally, reflecting the water availability.  相似文献   

5.
Abstract. Several measures of biodiversity were calculated (species richness SR, species diversity H', species evenness J', mean similarity, mosaic diversity and factorial diversity) in vascular plant communities along a landscape gradient in the Seine valley, Normandy, France. For these communities, we also recorded environmental and management data. Species and environmental data were analysed simultaneously by Canonical Correspondence Analysis (CCA) in order to study their relationships. CCA identifies one main landscape gradient linked to a set of highly linked ecological factors. Three community types were identified along this gradient: calcicolous communities on chalk slopes, mesophilous communities on colluvium and hydrophilous communities on alluviums. The measures of biodiversity between these groups and their variations along the landscape gradient indicate similar patterns for H', J' and SR. Between‐community biodiversity measures allow consideration of the distribution of species among communities in the landscape. Factorial diversity accounts for the organisation of the communities with reference to the basic mechanisms of species coexistence. Affinity analysis (similarity and mosaic diversity) measures the compositional pattern diversity, which is the function of the variation in species richness. We discuss the indicative versus the predictive value of these measures of biodiversity as regards ecological factors and processes and their application for conservation purposes.  相似文献   

6.
Plant biodiversity theory suggests that increased plant species diversity contributes to the stability of ecosystems. In managed grasslands, such as pastures, greater stability of herbage production would be beneficial. In this retrospective study, I used data from three reports from the 1930s, 1940s, and 1960s to determine whether increasing mixture complexity contributed to yield stability with time. Yield data from a total of 175 mixtures of grasses and legumes (two to seven species per mixture) in experiments of 3–6 year duration in Connecticut, Pennsylvania, and Utah, USA, were used in the analysis. Regression was used to examine relationships among herbage yield, stability of yield [measured as the interannual coefficient of variation (CV)], and diversity measures [Shannon diversity index (H), species richness (S), and evenness (J)]. In several instances there was no relationship between herbage yield or yield stability and the complexity (number of species) of the mixture. In one experiment, the proportion of legume in the sward seemed to be the controlling factor regarding herbage yield and yield stability. Monocultures and binary mixtures frequently had the highest interannual CV (e.g., less yield stability) than more complex mixtures. Within forage mixtures, however, there was no consistent relationship between herbage yield or yield stability and measures of species diversity. Species identity and composition of forage mixtures may be more important determinants of herbage yield than simply the number of species.  相似文献   

7.
Numerous experiments have been established to examine the effect of plant diversity on the soil microbial community. However, the relationship between plant diversity and microbial functional diversity along broad spatial gradients at a large scale is still unexplored. In this paper, we examined the relationship of plant species diversity with soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Preliminary detrended correspondence analysis (DCA) indicated that plant composition showed a significant separation along the axis 1, and axis 1 explained the main portion of variability in the data set. Moreover, DCA-axis 1 was significantly correlated with soil microbial biomass C (r = 0.735, P = 0.001), microbial catabolic activity (average well color development; r = 0.775, P < 0.001) and microbial functional diversity (catabolic diversity: r = 0.791, P < 0.001 and catabolic richness: r = 0.812, P < 0.001), which suggested thatsome relationship existed between plant composition and the soil microbial community along the spatial gradient at a large scale. Soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic richness showed a significant, linear increase with greater plant species richness. However, many responses that we observed could be explained by greater aboveground plant biomass associated with higher levels of plant diversity, which suggested that plant diversity impacted the soil microbial community mainly through increases in plant production.  相似文献   

8.
9.
Abstract. In this study, we documented patterns of variation in leaf phenology and leaf herbivory in scrub oak (Quercus ilicifolia Wang) along the slope of a closed topographical depression, 15 m deep and 400 m wide, in the pine barrens of eastern Massachusetts. Minimum temperatures over the growing season averaged 6.5 °C lower at the bottom of the depression than at the top. Bud break at the bottom of the depression was 2–3 weeks delayed compared with the top. In both years of this study, 1988 and 1989, leaf damage by thrips increased down slope producing differences of about 10 % in the proportion of leaf area damaged between the top and the bottom of the depression. Because thrips fed exclusively on the youngest leaves, this pattern could be attributed to a closer synchrony between the timing of leaf flushing and the period of insect feeding activity towards the bottom of the depression. Average differences in leaf damage between years could also be accounted for by variation in leaf phenology. These patterns support the hypothesis that the degree of temporal overlap between availability of high quality foliage and the period of insect feeding activity may greatly determine spatial and temporal variation in leaf damage by insect herbivores.  相似文献   

10.
天山南坡高寒草地海拔梯度上的植物多样性变化格局   总被引:15,自引:0,他引:15  
山地气候随海拔梯度变化使山地成为研究生物多样性的热点区域。在天山南坡巴音布鲁克高寒草地,对不同海拔梯度下的物种多样性进行了研究。结果表明共调查样地9个,出现植物34种,分属17科29属;物种丰富度随海拔升高呈明显的偏峰格局,在海拔3060m的天山羽衣草(Alchemilla tianschanica)草甸,物种组成最为丰富,出现植物17种,分属12科17属;Shannon-Wiener指数的变化范围为2.02~2.40,最小值出现在海拔2760m以紫花针茅(Stipa purpurea)为优势种的高寒草原,峰值则出现在3060m的天山羽衣草草甸,Shannon-Wiener指数随海拔梯度的变化趋势与物种丰富度基本相同,呈明显的偏峰格局;随海拔升高,Cody指数表现出明显的单峰格局;Shannon-Wiener指数与生长季温度存在显著负相关,而与生长季湿度和土壤含水量存在显著正相关。  相似文献   

11.
The positive effects of biodiversity on the functioning of ecosystems are well demonstrated in laboratory microcosms but the precise mechanisms underlying higher ecosystem process rates in natural assemblages are less well understood. We investigated, under semi-natural conditions (field enclosures), the potentially interactive effects of species identity and trophic function (i.e., feeding guild) on consumer growth, using a fish assemblage in a tropical stream. We tested the relative importance of species identity and trophic function on consumer growth by placing 2 fish of either (i) the same species, (ii) different species but of similar trophic function, or (iii) different species of different trophic functions in each of 72 stream enclosures for 48 days and measuring biomass change, individual diet composition and behavior. We predicted that if functional diversity had a larger impact than species diversity, then fish growth would be highest for pairs of species from different functional groups (i.e., those with the highest diet complementarity), intermediate for different species within a guild, and lowest for the same species (those with the lowest complementarity and highest niche overlap), such that functional variation between species in different guilds would exceed functional differences within guilds. Our results show that functional heterogeneity rather than species diversity per se had the greatest impact on food resources used complementarily, leading to higher biomass accrual. Mechanistically, higher growth rates were driven by concomitant increases in resource intake and reductions in antagonistic interactions. Together, these results underscore the importance of functional diversity on macroconsumer production in natural assemblages.  相似文献   

12.
Many current theories of community function are based on the assumption that disturbances such as herbivory act to reduce the importance of neighbor interactions among plants. In this study, we examined the effects of herbivory (primarily by nutria, Myocastor coypus) on neighbor interactions between three dominant grasses in three coastal marsh communities, fresh, oligohaline, and mesohaline. The grasses studied were Panicum virgatum, Spartina patens, and Spartina alterniflora, which are dominant species in the fresh, oligohaline, and mesohaline marshes, respectively. Additive mixtures and monocultures of transplants were used in conjunction with exclosure fences to determine the impact of herbivory on neighbor interactions in the different marsh types. Herbivory had a strong effect on all three species and was important in all three marshes. In the absence of herbivores, the impact of neighbors was significant for two of the species (Panicum virgatum and Spartina patens) and varied considerably between environments, with competition intensifying for Panicum virgatum and decreasing for Spartina patens with increasing salinity. Indications of positive neighbor effects (mutualisms) were observed for both of these species, though in contrasting habitats and to differing degrees. In the presence of herbivores, however, competitive and positive effects were eliminated. Overall, then, it was observed that in this case, intense herbivory was able to override other biotic interactions such as competition and mutualism, which were not detectable in the presence of herbivores.  相似文献   

13.
Over the past decade an increasing amount of research has sought to understand how the diversity of species in an ecosystem can influence fluxes of biologically important materials, such as the decomposition of organic matter and recycling of nutrients. Generalities among studies have remained elusive, perhaps because experimental manipulations have been performed at relatively small spatial scales where site-specific variation generates patterns that appear idiosyncratic. One approach for seeking generality is to perform parallel experiments at different sites using an identical species pool. Here we report results from a study where we manipulated the diversity of leaf litter from the same six dominant tree species in the litter layer of three forested ecosystems. These ecosystems spanned a 300 km latitudinal transect in Wisconsin, USA, and were characterized by a large gradient in temperature and moisture, and thus, rates of decomposition. After allowing combinations of one, two, four, and six species of leaf litter to decompose for 1 year, we found that increasing leaf litter richness led to slower rates of decomposition and higher fractions of nitrogen lost from litter. Across all sites, climate and initial litter chemistry explained more of the variation in decomposition rates than did litter richness. Effects of leaf litter diversity were non-additive, meaning they were greater than expected from the impacts of individual species, and appeared to be strongly influenced by the presence/absence of just 1–2 species (Tilia americana and Acer saccharum). The rate of decomposition of these two species was highly site-specific, which led to strong negative effects of litter richness only being observed at the southernmost sites where T. americana and A. saccharum decomposed more quickly. In contrast, litter diversity increased nitrogen loss at the northernmost sites where decomposition of T. americana was notably slowed. Our study shows that species diversity affected at least one of the two litter processes at each site along this 300-km gradient, but the exact nature of these effects were spatially variable because the performance of individual species changed across the heterogeneous landscape.  相似文献   

14.
Allan E  Crawley MJ 《Ecology letters》2011,14(12):1246-1253
The importance of invertebrate herbivores in regulating plant communities remains unclear, due to the absence of long-term exclusion experiments. An experiment in an English grassland involving long-term exclusions of insect and mollusc herbivores, along with rabbit fencing, showed strong, but opposing, effects of the invertebrate herbivores. Plant species richness declined and biomass increased following insect exclusion, due to increased dominance by a grass species, whereas mollusc exclusion led to increased herbs abundance. The two herbivores had a compensatory interaction: molluscs had no effects in the absence of insects and large insect effects depended on the absence of molluscs. The effects of invertebrate exclusion became apparent only after 8 years, and would have been seriously underestimated in shorter studies. Our results suggest that theorists and conservation managers need to shift from their historic focus on vertebrate herbivory, to a recognition that invertebrates can be equally important drivers of plant community structure.  相似文献   

15.
Several biodiversity experiments have shown positive effects of species richness on aboveground biomass production, but highly variable responses of individual species. The well-known fact that the competitive ability of plant species depends on size differences among species, raises the question of effects of community species richness on small-stature subordinate species. We used experimental grasslands differing in species richness (1-60 species) and functional group richness (one to four functional groups) to study biodiversity effects on biomass production and ecophysiological traits of five small-stature herbs (Bellis perennis, Plantago media, Glechoma hederacea, Ranunculus repens and Veronica chamaedrys). We found that ecophysiological adaptations, known as typical shade-tolerance strategies, played an important role with increasing species richness and in relation to a decrease in transmitted light. Specific leaf area and leaf area ratio increased, while area-based leaf nitrogen decreased with increasing community species richness. Community species richness did not affect daily leaf carbohydrate turnover of V. chamaedrys and P. media indicating that these species maintained efficiency of photosynthesis even in low-light environments. This suggests an important possible mechanism of complementarity in such grasslands, whereby smaller species contribute to a better overall efficiency of light use. Nevertheless, these species rarely contributed a large proportion to community biomass production or achieved higher yields in mixtures than expected from monocultures. It seems likely that the allocation to aboveground plant organs to optimise carbon assimilation limited the investment in belowground organs to acquire nutrients and thus hindered these species from increasing their performance in multi-species mixtures.  相似文献   

16.
Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction with plant species and functional group richness, and their effects on belowground plant competition. In the framework of the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four). We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity (+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure of plant communities by beneficially affecting certain plant functional groups.  相似文献   

17.
高寒草地植物物种多样性与功能多样性的关系   总被引:5,自引:0,他引:5  
物种多样性与功能多样性的关系是生态学当前研究的热点问题之一,不同区域典型生态系统物种多样性和功能多样性的关系研究有利于生物多样性保护理论的全面发展。以青藏高原地区的主要草地生态系统—高寒草甸和高寒草原为研究对象,采用4个物种多样性指数(Patrick丰富度指数、Shannon-Weiner多样性指数、Pielou均匀度指数和Simpson优势度指数)和9个功能多样性指数(FAD功能性状距离指数、MFAD功能性状平均距离指数、基于样地的FDp和基于群落的FDc功能树状图指数、FRic功能体积指数、FEve功能均匀度指数、Rao功能离散度常二次熵指数、FDiv功能离散指数、FDis功能分散指数),分析了高寒草地植物物种多样性、功能多样性关系及其与初级生产力的关系,以期阐明3个科学问题:不同草地类型的高寒草地生态系统植物物种多样性和功能多样性有何差异?高寒草地生态系统的植物物种多样性和功能多样性有何关系?高寒草地生态系统物种多样性、功能多样性对生态系统功能的影响有何异同?研究结果表明:(1)与高寒草原相比,高寒草甸具有更高的物种多样性、功能丰富度和功能离散度;(2)高寒草甸中,Patrick丰富度与功能丰富度指数(FAD、MFAD、FDp、FDc)和功能离散度指数(FDiv)的具有较强的相关性,最优拟合方程分别为幂函数和二次多项式函数;(3)高寒草原中,Patrick丰富度与功能丰富度指数(FAD、MFAD、FDp、FDc、FRic)、Shannon指数和Simpson指数与FEve指数的相关性较强,最优拟合方程为二次多项式函数,Pielou指数与FEve指数的相关性较强,最优拟合方程为指数函数;(4)高寒草甸的初级生产力分别与物种丰富度指数Patrick、功能离散指数FDiv具有较强的相关性;而高寒草原的初级生产力与4个物种多样性指数间均具有较强的相关性,与功能离散指数FDiv具有较强的相关性,最佳拟合方程均为二次多项式函数。研究的总体结论为:物种多样性、功能多样性、二者之间的关系以及二者与生态系统服务功能(以初级生产力为例)之间的关系在高寒草甸和高寒草原群落中表现迥异,因此在研究青藏高原高寒草地的生态功能时,不能仅仅测度传统的物种多样性,还应测度与物种多样性、生态功能密切相关的功能多样性。  相似文献   

18.
Summary The effects of root herbivory by larvae of the scarabaeid, Phyllopertha horticola, on the growth of Capsella bursa-pastoris were examined. Individuals of Aphis fabae were reared on the leaves to determine what effect, if any, root feeding has on the performance of this insect. The experiment was conducted under two watering regimes (low and high). Low watering and root feeding caused water stress in the plants and this was reflected in a reduction in vegetative biomass and an increase in the proportion of material allocated to reproduction. Supplying plants with ample water in the high treatment enabled the water stress caused by root herbivory to be offset, but not completely overcome. Low watering and root feeding caused an increase in aphid weight and growth rate, while root feeding also increased fecundity and adult longevity. These effects are attributed to an improvement in food quality, measured by total soluble nitrogen, and caused by amino acid mobilization due to the water stress. The implications of these results in agricultural and ecological situations are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号