首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutualistic interactions can be exploited by cheaters that take the rewards offered by mutualists without providing services in return. The evolution of cheater species from mutualist ancestors is thought to be possible under particular ecological conditions. Here we provide a test of the first explicit model of the transition from mutualism to antagonism. We used the obligate pollination mutualism between yuccas and yucca moths to examine the origins of a nonpollinating cheater moth, Tegeticula intermedia, and its pollinating sister species, T. cassandra. Based on geographic distribution and ecological factors affecting the pollinators, previous research had indicated that the cheaters evolved in Florida as a result of sympatry of T. cassandra and another pollinator species. We used mitochondrial DNA (mtDNA) sequences and amplified fragment length polymorphism (AFLP) data to investigate the phylogeographic history of the pollinator-cheater sister pair and to test whether the cheaters arose in Florida. Contrary to predictions, phylogenetic and population genetic analyses suggested that the cheaters evolved in the western United States and subsequently spread eastward. Western populations of cheaters had the most ancestral haplotypes and the highest genetic diversity, and there was also significant genetic structure associated with a geographic split between eastern and western populations. In comparison, there was evidence for weak genetic structure between northern and southern pollinator populations, suggesting a long history in Florida. The western origin of the cheaters indicated that the pollinators have more recently become restricted to the southeastern United States. This was supported by AFLP analyses that indicated that the pollinators were more closely related to the western cheaters than they were to geographically proximate cheaters in the east. Shared mtDNA between pollinators and eastern cheaters suggested hybridization, possibly in a secondary contact zone. The results negate the out-of-Florida hypothesis and reveal instead a long, complex, and disparate history for the pollinator-cheater sister pair.  相似文献   

2.
The interaction between yucca plants and yucca moths has been one of the focal model systems investigated in the study of pollination mutualism and coevolution, especially in terms of understanding the prevention of overexploitation by mutualist partners. Yuccas have the ability to assess the number of eggs placed by pollinators into their ovaries, and can preferentially abort those flowers that would have many moth larvae consuming yucca seeds. Previous phylogenetic research identified a rapid radiation of moth species that corresponded with shifts in the interaction with their host plants. These shifts led to the evolution of moth species that circumvent the egg detection method used by yuccas to limit seed damage. In particular, some pollinator species deposit their eggs so that they are undetectable by the plants, whereas other species are ‘cheaters’ that have lost the ability to pollinate, yet deposit eggs into developing fruit rather than flowers. The evolution of these new species happened so quickly that the phylogeny of the moths has remained unresolved despite repeated attempts with standard Sanger sequencing of mtDNA loci and AFLP marker generation. Here, we use extensive analyses of RAD‐seq data to determine the phylogenetic relationships among yucca moth species. The results provide a robust phylogenetic framework that identifies the evolutionary relationships among shifts in egg‐laying strategies, as well as determining the closest pollinating relatives to the cheater species. Based on the obtained phylogeny, a shift in egg‐laying strategy that avoided the overexploitation regulatory mechanism used by yucca plants was a precursor for the evolution of two species with cheating behaviour.  相似文献   

3.
徐睿  张媛  彭艳琼  杨大荣 《生态学报》2016,36(4):1134-1140
榕树及其专一性传粉榕小蜂组成了动植物界最为经典的协同进化关系,传粉榕小蜂演化出欺骗性是非常罕见的。在雌雄同株的高榕隐头果内,共存着一种传粉榕小蜂Eupristina altissima和一种欺骗性的小蜂Eupristina sp.,两种小蜂在雌花期进入隐头果内繁殖,但有不同的繁殖特点。对比研究了两种小蜂从成虫羽化到产卵和传粉这个阶段的雌蜂个体大小、孕卵量及繁殖差异,结果表明:羽化期两种雌蜂的平均个体小,经飞行小个体的雌蜂易死亡,大个体雌蜂到达接受树,但通过苞片通道,一些个体较大的传粉榕小蜂被夹死导致进入果腔的雌蜂相对小,而欺骗性小蜂易通过苞片以至进入果腔的雌蜂个体较大。两种未产卵雌蜂均表现为个体大者孕卵量较多,但两种雌蜂的平均孕卵量没有差异。即使有充足雌花资源产卵,两种雌蜂均未产完所有卵,产卵后两种雌蜂卵巢中的卵量均显著减少,遗留下的卵量两种小蜂间没有差异。传粉榕小蜂只有部分个体传完所携带花粉,并表现为传粉越成功的雌蜂,产卵越多。存在种内竞争时,两种小蜂的产卵量均减少,传粉榕小蜂的传粉效率也降低。在种间竞争背景下,欺骗性小蜂产卵更成功,传粉榕小蜂的产卵和传粉量均受到极大抑制。研究结果说明雌花期隐头果内传粉榕小蜂只适量利用雌花资源产卵繁殖后代,更有效地传粉繁殖榕树种子,这可能是维持榕-蜂互惠系统稳定共存的重要机制之一;欺骗者稳定存在需降低与传粉者的直接竞争,而欺骗者和传粉者分散在不同果内,甚至是不同的树上繁殖是理想的繁殖策略。  相似文献   

4.
In mutualisms, an underlying conflict of interests may select for defection from providing benefits. In the obligate mutualism between yuccas and yucca moths, where pollination service and seeds for pollinator larvae are traded, it has been suggested that some individuals in a population of Y. baccata may defect by preventing pollinator egg or larvae from development. We tested this hypothesis in Y. treculeana , another species suggested to contain cheater plants. Five specific predictions were tested during two years of study. A prediction that a surplus of plants without pollinator larvae should be present was met. Predicted existence of two distinct fruit morphs was rejected, and none of several highly variable morphological traits were linked to presence/absence of larvae. Predicted excess of intact seeds in the fruits of plants without larvae was not found; in fact, such plants produced fewer seeds, contrary to the hypothesis. A suggestion that inverse frequency-dependent fitness could explain the pattern was rejected. Contrary to prediction, distribution of larvae of a closely related cheater yucca moth was positively associated with pollinator larvae, even though it would not be affected by the proposed killing mechanism. The results together provide strong support against the existence of cheater plants in Y. treculeana .  相似文献   

5.
Abstract 1. A major question in the study of mutualism is to understand how mutualists may revert to antagonists that exploit the mutualism (i.e. switch to cheating). In the classic pollination mutualism between yuccas and yucca moths, the cheater moth Tegeticula intermedia is sister to the pollinator moth T. cassandra. These moth species have similar ovipositor morphology, but T. intermedia emerges later, oviposits into fruit rather than flowers, and does not pollinate. 2. We tested if the pollinator, T. cassandra, was pre‐adapted to evolve a cheater lineage by comparing its emergence and oviposition behaviour on yucca fruit to a distantly related pollinator, T. yuccasella, that differs in ovipositor morphology and oviposition behaviour. We predicted that if T. cassandra was pre‐adapted to cheat, then these pollinators would emerge later and be able to oviposit into fruit in contrast to T. yuccasella. 3. Contrary to expectations, a common garden‐rearing experiment demonstrated that emergence of T. cassandra was not significantly delayed relative to T. yuccasella. Moth emergence patterns overlapped broadly. 4. No choice oviposition experiments with female moths demonstrated that both pollinator species attempted to oviposit into fruit, but only T. cassandra was successful. Four out of 84 T. cassandra successfully oviposited into older fruit, whereas zero out of 79 T. yuccasella oviposited into older fruit. The rarity of the cheating behaviour in pollinators, however, meant that no significant difference in oviposition ability was detected. 5. The results suggest that a shift in emergence phenology is likely not a pre‐adaptation to the evolution of cheating, but that the ability to successfully lay eggs into fruit may be. The results also demonstrate that cheating attempts are rare in these pollinator species and, hence, the evolutionary transition rate from pollinator to cheater is likely to be low.  相似文献   

6.
The yucca moths (Tegeticula and Parategeticula) are of great importance in studies of coevolution because of their obligate mutualism with their yucca hosts. Historically, three species of Tegeticula have been recognized. One of them, T. yuccasella, has been regarded as the pollinator of all but two yucca species, but morphological, molecular and biological data show that this is a large complex of monophagous and oligophagous species that differ greatly in their biology. It also includes derived ‘cheater’ species that do not pollinate their hosts and oviposit into fruits rather than flowers. Here the yuccasella complex north of Mexico is revised. The nominotypic pollinator species yuccasella is redescribed, and ten new pollinator species described: altiplanella, baccatella, carnerosanella, cassandra, elatella, maderae, mojavella, rostratella, superficiella and treculeanella. Two non-pollinating cheater species are recognized. One such species originally misidentified as a Prodoxus species, then synonymised with yuccasella, is re-erected as the non-pollinating intermedia. In addition, the new non-pollinator species corruptrix is described.  相似文献   

7.
Purposeful pollination of yucca by females of a moth that produces larvae that feed on some of the seeds is a classic example of plant-animal mutualism. Recent research has focused on the complex interspecific nature of this association. Pollinators are members of two genera with different oviposition and larval biologies. There appear to be several sibling species among populations of the pollinator that were formerly considered to be a single widespread generalist, and these may include sympatric nonpollinator 'cheaters'. Bogus yucca moths, members of a third genus, which neither transport pollen nor feed in the seed but depend upon the inflorescences, are niche specific and often host-species specific and include one leaf-mining species. Their larvae can spend many years in diapause before synchronized development.  相似文献   

8.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

9.
Anna Westerbergh 《Oikos》2004,105(3):564-574
Seed predator/pollinator and host plant interactions, which may be considered as antagonistic, have the potential to provide good model systems for the study of the early stages of evolution towards mutualism. I describe a relationship between a seed predator, the geometrid moth Perizoma affinitatum , and the dioecious plant Silene dioica . The moth is an obligate seed predator on its host plant. The searching and ovipositing behaviour of the female moths, number of eggs deposited per flower, the pollinating ability of the moths and the seed consumption by the larvae are described as different parameters and studied in two Finnish coastal populations. A high pollinating ability and limited seed consumption by the predator was found and discussed in relation to fitness models of P. affinitatum and S. dioica . In a mutualistic relationship there must be a balance between the costs and benefits so that the seed production by the moths is larger than the seed consumption by the larvae, given a net seed output larger than zero. The data of the parameters included in a seed production/consumption model give a positive seed output when the proportion of S. dioica flowers pollinated by other non-predating insects is less than 60%. Accordingly, even if P. affinitatum would become the exclusive pollinator it would not endanger the survival of the host plant and both partners would benefit from this interaction. Limited seed consumption, high pollinating ability and host specificity as seen in the P. affinitatum and S. dioica interaction are considered to have been important pre-existing qualities in the evolution of the obligate mutualisms between yucca and yucca moths and fig and fig wasps. In isolated serpentine populations where the gene flow is restricted and co-pollinators are rare the interaction between P. affinitatum and S. dioica has the potential to shift from parasitism to mutualism.  相似文献   

10.
Theory suggests that coevolution drives diversification in obligate pollination mutualism, but it has been difficult to disentangle the effects of coevolution from other factors. We test the hypothesis that differential selection by two sister species of pollinating yucca moths (Tegeticula spp.) drove divergence between two varieties of the Joshua tree (Yucca brevifolia) by comparing measures of differentiation in floral and vegetative features. We show that floral features associated with pollination evolved more rapidly than vegetative features extrinsic to the interaction and that a key floral feature involved in the mutualism is more differentiated than any other and matches equivalent differences in the morphology of the pollinating moths. A phylogenetically based, ancestral states reconstruction shows that differences in moth morphology arose in the time since they first became associated with Joshua trees. These results suggest that coevolution, rather than extrinsic environmental factors, has driven divergence in this obligate pollination mutualism.  相似文献   

11.
The determinants of a species' geographic distribution are a combination of both abiotic and biotic factors. Environmental niche modeling of climatic factors has been instrumental in documenting the role of abiotic factors in a species' niche. Integrating this approach with data from species interactions provides a means to assess the relative roles of abiotic and biotic components. Here, we examine whether the high host specificity typically exhibited in the active pollination mutualism between yuccas and yucca moths is the result of differences in climatic niche requirements that limit yucca moth distributions or the result of competition among mutualistic moths that would co‐occur on the same yucca species. We compared the species distribution models of two Tegeticula pollinator moths that use the geographically widespread plant Yucca filamentosa. Tegeticula yuccasella occurs throughout eastern North America whereas T. cassandra is restricted to the southeastern portion of the range, primarily occurring in Florida. Species distribution models demonstrate that T. cassandra is restricted climatically to the southeastern United States and T. yuccasella is predicted to be able to live across all of eastern North America. Data on moth abundances in Florida demonstrate that both moth species are present on Y. filamentosa; however, T. cassandra is numerically dominant. Taken together, the results suggest that moth geographic distributions are heavily influenced by climate, but competition among pollinating congeners will act to restrict populations of moth species that co‐occur.  相似文献   

12.
Plant-insect associations have served as models for investigations of coevolution and the influence of biotic interactions on diversification. The pollination association between yuccas and yucca moths is a classic example of an obligate mutualism often suggested to have been affected by coevolution. Recent work has shown high host specificity in pollinating yucca moths, and here we use Tegeticula yuccasella, the species with the widest diet breadth, to ask how host specificity and isolation by distance contribute to specialization. Isolation by distance at a regional scale was observed in nucleotide variation within the mitochondrial gene cytochrome oxidase I (COI) (r =.294; P =.003). Host-related genetic structure (F(ct) = 0.08) was found to be slightly lower than the level of structure observed between eastern and western moth populations (F(ct) = 0.096). However, 56% of the COI haplotypes sampled from moths on Yucca filamentosa mapped to a host-specific clade in the haplotype network. Taken together, these results suggest that differentiation among T. yuccasella populations on alternative hosts is slight, but gene flow is influenced by both host association and geographic distance.  相似文献   

13.
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.  相似文献   

14.
Mutualisms are balanced antagonistic interactions where both species gain a net benefit. Because mutualisms generate resources, they can be exploited by individuals that reap the benefits of the interaction without paying any cost. The presence of such 'cheaters' may have important consequences, yet we are only beginning to understand how cheaters evolve from mutualists and how their evolution may be curtailed within mutualistic lineages. The yucca-yucca moth pollination mutualism is an excellent model in this context as there have been two origins of cheating from within the yucca moth lineage. We used nuclear and mitochondrial DNA markers to examine genetic structure in a moth population where a cheater species is parapatric with a resident pollinator. The results revealed extensive hybridization between pollinators and cheaters. Hybrids were genetically intermediate to parental populations, even though all individuals in this population had a pollinator phenotype. The results suggest that mutualisms can be stable in the face of introgression of cheater genes and that the ability of cheaters to invade a given mutualism may be more limited than previously appreciated.  相似文献   

15.
The classic obligate pollination–seed consumption mutualism between yuccas and yucca moths has been thought to be mediated by chemical cues, but empirical data on pollinator attraction to host floral volatiles in this association have been lacking. Here we show that the scent from virgin flowers of the host Yucca glauca is sufficient to attract its obligate pollinator Tegeticula yuccasella in Y‐tube olfactometer tests. Interestingly, both sexes of moths were attracted to the scent stimulus. Because yucca moths mate inside host flowers, the attraction of both females and males to host floral volatiles is likely to increase encounter rates. In a second test, female moths did not discriminate between virgin and hand‐pollinated flowers, indicating no post‐pollination change in scent production by the host that would lead to a reduction in pollinator attraction and thereby limit exploitation of the available seeds in host flowers. However, other mechanisms that could stabilise the mutualism between T. yuccasella and its yucca hosts have already been documented, i.e. selective abortion of heavily infested flowers, and a female‐derived host‐marking pheromone. Headspace collection and GC–MS were used to identify the blend of floral volatiles emitted by Y. glauca, which was found to be very similar to those of two other allopatric capsular‐fruited species, Y. elata and Y. filamentosa, revealing strong conservation of this trait within Yucca section Chaenocarpa.  相似文献   

16.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

17.
The landmark discovery of obligate pollination mutualism between Glochidion plants and Epicephala moths has sparked increased interest in the pollination systems of Phyllantheae plants. In this paper I review current information on the natural history and evolutionary history of obligate pollination mutualism in Phyllantheae. Currently, an estimated >500 species are mutualistic with Epicephala moths that actively pollinate flowers and whose progeny feed on the resulting seeds. The Phyllantheae also includes species that are not mutualistic with Epicephala moths and are instead pollinated by bees and/or flies or ants. Phylogenetic analyses indicate that the mutualism evolved independently five times within Phyllantheae, whereas active pollination behavior, a key innovation in this mutualism, evolved once in Epicephala . Reversal of mutualism has occurred at least once in both partner lineages, involving a Breynia species that evolved an alternative pollination system and a derived clade of Epicephala that colonized ant-pollinated Phyllantheae hosts and thereby lost the pollinating habit. The plant–moth association is highly species specific, although a strict one-to-one assumption is not perfectly met. A comparison of plant and moth phylogenies suggests signs of parallel speciation, but partner switches have occurred repeatedly at a range of taxonomic levels. Overall, the remarkable species diversity and multiple originations of the mutualism provide excellent opportunities to address many important questions on mutualism and the coevolutionary process. Although research on the biology of the mutualism is still in its infancy, the Phyllantheae– Epicephala association holds promise as a new model system in ecology and evolutionary biology.  相似文献   

18.
The yucca moths ( Tegeticula and Parategeticula ; Lepidoptera, Prodoxidae) are well known for their obligate relationship as exclusive pollinators of yuccas. Revisionary work in recent years has revealed far higher species diversity than historically recognized, increasing the number of described species from four to 20. Based on field surveys in Mexico and examination of collections, we describe five additional species: T. californica Pellmyr sp. nov. , T. tehuacana Pellmyr & Balcázar-Lara sp. nov. , T. tambasi Pellmyr & Balcázar-Lara sp. nov., T. baja Pellmyr & Balcázar-Lara sp. nov. and P. ecdysiastica Pellmyr & Balcázar-Lara sp. nov . Tegeticula treculeanella Pellmyr is identified as a junior synonym of T. mexicana Bastida. A diagnostic key to the adults of all species of the T. yuccasella complex is provided. A phylogeny based on a 2104-bp segment of mitochondrial DNA (mtDNA) in the cytochrome oxidase I and II region supported monophyly of the two pollinator genera, and strongly supported monophyly of the 17 recognized species of the T. yuccasella complex. Most relationships are well supported, but some relationships within a recent and rapidly diversified group of 11 taxa are less robust, and in one case conflicts with a whole-genome data set (amplified fragment length polymorphism, AFLP). The current mtDNA-based analyses, together with previously published AFLP data, provide a robust phylogenetic foundation for future studies of life-history evolution and host interactions in one of the classical models of coevolution and obligate mutualism.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 297–314.  相似文献   

19.
The origins of obligate pollination mutualisms, such as the classic yucca–yucca moth association, appear to require extensive trait evolution and specialization. To understand the extent to which traits truly evolved as part of establishing the mutualistic relationship, rather than being pre‐adaptations, we used an expanded phylogenetic estimate with improved sampling of deeply‐diverged groups to perform the first formal reconstruction of trait evolution in pollinating yucca moths and their nonpollinating relatives. Our analysis demonstrates that key life‐history traits of yucca moths, including larval feeding in the floral ovary and the associated specialized cutting ovipositor, as well as colonization of woody monocots in xeric habitats, may have been established before the obligate mutualism with yuccas. Given these pre‐existing traits, novel traits in the mutualist moths are limited to the active pollination behaviours and the tentacular appendages that facilitate pollen collection and deposition. These results suggest that a highly specialized obligate mutualism was built on the foundation of pre‐existing interactions between early Prodoxidae and their host plants, and arose with minimal trait evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 847–855.  相似文献   

20.
Abstract.  1. The interaction between Ficus species and their pollinating wasps (Agaonidae) represents a striking example of a mutualism. Figs also shelter numerous non-pollinating chalcids that exploit the fig–pollinator mutualism.
2. Previous studies showed a weak negative correlation between numbers of pollinating and non-pollinating adults emerging from the same fruit. Little is known about the patterns and intensities of interactions between fig wasps. In the Xishuangbanna tropical rainforests of China, the dioecious Ficus hispida L. is pollinated by Ceratosolen solmsi marchali Mayr and is also exploited by the non-pollinators Philotrypesis pilosa Mayr, Philotrypesis sp., and Apocrypta bakeri Joseph. Here, the interaction of pollinator and non-pollinators on F. hispida is studied quantitatively.
3. The exact time of oviposition was determined for each species of fig wasp. Based on observational and experimental work it is suggested that (i) the relationship between pollinator and non-pollinators is a positive one, and that the genus Philotrypesis appears to have no significant impact on the pollinator population, whereas Apocrypta has a significant effect on both Philotrypesis and Ceratosolen ; (ii) gall numbers do not always increase with increasing number of foundresses, but developmental mortality of larvae correlates positively with the number of foundresses; and (iii) there is a positive correlation between non-pollinator numbers and their rates of parasitism, but the three species of non-pollinators differed in their rates of parasitism and show different effects on pollinator production.
4. The rates of parasitism when combined with the coexistent percentage and developmental mortality, underpin the way non-pollinating fig wasps successfully exploit and coexist stably in a fig–pollinator mutualism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号