首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerization of 2'deoxy-2'-fluoro-cytidine-diphosphate (dCflDP) by polynucleotide phosphorylase is barely detectable in the presence of Mg++ under usual experimental conditions for polymerization of nucleoside diphosphates. High concentrations of enzyme have to be used to accomplish the synthesis. Mn++ is a better activator than Mg++ for the reaction. cCflDP inhibits the polymerization of CDP and has a Km=8.8X10-3M, six times higher than CDP.- The polymer, poly (dCfl), ressembles in many respects poly(C), but not poly(dC): the acid selfstructure forms at similar pK's; interaction with poly(I) yields a 1:1 complex the CD spectrum of which is similar to that of poly(I).poly(C). Finally, the Tm's of poly(I).poly(dCfl) are comparable to those of poly(I).poly(C).  相似文献   

2.
The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.  相似文献   

3.
4.
Role of the LFA3-CD2 interaction in human specific B cell differentiation   总被引:2,自引:0,他引:2  
We examined the role of the lymphocyte function-associated (LFA)3 molecule in human B cell response. A mAb to this molecule did not influence B cell proliferation induced by anti-mu antibody and IL. In contrast, the same mAb inhibited the specific T-dependent B cell response induced by a particulate Ag. In the same line, two anti-CD2 mAb (directed toward the T11-1 and T11-2 epitopes) inhibited this response, whether used alone or in association. These inhibitions took place at an early stage of the response, and anti-LFA3 and anti-CD2 mAb acted on B cells and T cells, respectively. In contrast, when T cell help was provided by exogenous IL-2, the B cell response was resistant to the inhibitory effect of anti-LFA3 mAb. Taken together, these results indicate that the LFA3-CD2 pair play a major role in the direct T-B interaction required for T cell help.  相似文献   

5.
The specific DNA binding ligand netropsin selectively blocks dA-dT base pairs in clusters containing two or more consecutive thymine residues at the dNAase I cleavage sites of DNA. Using CD and UV absorption measurements it is shown, that at various ratios of netropsin to nucleotide concentrations and even at satuation of ligand interaction the enzyme cuts along regions containing dG-dC pairs sandwiched between dA-dT pairs. This follows a slow kinetics and is associated with a release of netropsin from those segments. These facts suggests the usefulness of the partial protection of certain DNA sequences in DNAase I cleavage sites in producing DNA fragments in structural studies of the genome. A possible interpretation of the effect of netropsin binding on the enzymatic hydrolysis of phosphodiester bonds of the helix is discussed.  相似文献   

6.
Oligonucleotides containing 2-aminopurine (2-AP) in place of G or A in the recognition site of EcoRII (CCT/AGG) or SsoII (CCNGG) restriction endonucleases have been synthesized in order to investigate the specific interaction of DNA with these enzymes. Physicochemical properties (CD spectra and melting behaviour) have shown that DNA duplexes containing 2-aminopurine exist largely in a stable B-like form. 2-Aminopurine base paired with cytidine, however, essentially influences the helix structure. The presence of a 2-AP-C mismatch strongly reduces the stability of the duplexes in comparison with the natural double strand, indicated by a biphasic melting behaviour. SsoII restriction endonuclease recognizes and cleaves the modified substrate with a 2-AP-T mismatch in the centre of the recognition site, but it does not cleave the duplexes containing 2-aminopurine in place of inner and outer G, or both. EcoRII restriction endonuclease does not cleave duplexes containing 2-aminopurine at all. The two-substrate mechanism of EcoRII-DNA interaction, however, allows hydrolysis of the duplex containing 2-aminopurine in place of adenine in the presence of the canonical substrate.  相似文献   

7.
J Piette  M H Kryszke    M Yaniv 《The EMBO journal》1985,4(10):2675-2685
Specific interactions between proteins from mouse 3T6 cells and the enhancer sequence of polyoma virus were detected using the method of band shifting on polyacrylamide gels. Proteins eluted from 3T6 nuclei using a buffer containing 0.55 M NaCl, formed a stable complex with the B enhancer of polyoma virus. At least two different factors are involved in this interaction. The contact sites which were mapped on the DNA sequence using DNase I footprinting correspond to a GC-rich palindrome surrounded by two sequences homologous respectively to the immunoglobulin and to the immunoglobulin and SV40 enhancers. Moreover Bal31 deletion analysis confirmed that similar sequences are required for the formation of the complex. In spite of a common function and partial sequence homology among some enhancers, neither the polyoma A enhancer, the mouse immunoglobulin heavy chain gene enhancer, nor the origin-promoter-enhancer region of SV40 efficiently competed with the polyoma B enhancer for the binding of these molecules.  相似文献   

8.
Fluorescence spectroscopy was used to study the interaction between the minor-groove-binding drug netropsin and the self-complementary oligonucleotide d(CTGAnPTTCAG)2 containing the fluorescent base analogue 2-aminopurine (nP). The binding of netropsin to this oligonucleotide causes strong quenching of the 2-aminopurine fluorescence, observed by steady-state as well as time-resolved spectroscopy. From fluorescence titrations, binding isotherms were recorded and evaluated. The parameters showed one netropsin binding site/oligonucleotide duplex and an association constant of about 10(5) M-1 at 25 degrees C, 3-4 orders of magnitude weaker than for an exclusive adenine/thymine host sequence. From the temperature dependence of the association constant the thermodynamic parameters were obtained as delta G = -29 kJ/mol, delta H = -12 kJ/mol and delta S = +55 J.mol-1.K-1 at 25 degrees C. These parameters resemble those of the interaction of poly[(dG-dC).(dG-dC)] with netropsin, indicating a mainly entropy-driven reaction. The amino group of 2-aminopurine, like that of guanine, resides in the minor groove of DNA. Therefore the relatively weak binding of netropsin to d(CTGAnPTTCAG)2 is probably related to partial blockage of the tight fit of netropsin into the preferred minor groove of an exclusive adenine/thymine host sequence.  相似文献   

9.
10.
NMR studies of the interaction of chromomycin A3 with small DNA duplexes I   总被引:2,自引:0,他引:2  
1H and 31P NMR spectral analysis of a chromomycin/d(ATGCAT)2 complex provides strong evidence for a nonintercalative mode of drug binding. Investigation of the imino proton region of the duplex suggests a protection of one of the two guanine imino protons from fast exchange with the bulk water up to at least 45 degrees C by the drug. Subsequent one-dimensional nuclear Overhauser enhancement experiments place the exchangeable chromomycin chromophoric hydroxyl proton less than 0.45 nm from this guanine imino proton and the chromophore 7-methyl less than 0.45 from the internal thymine 6-proton and/or the guanine 8-proton. 1H two-dimensional NMR reveals that the duplex retains a right-handed B conformation but there are distortions at the TGC region of one chain and large deviations in the chemical shift of protons relative to the uncomplexed duplex in the other chain in the same TGC region. The data suggest that the chromomycin chromophore is oriented such that the hydrophilic side of the ring system is proximal to the helix center in the major groove near the TG region while the aromatic side of the ring is oriented away from the helix but is partially protected from the solvent by the aliphatic chain, which bends back over the two aromatic protons. Changes in the 31P spectrum of the duplex on binding of the drug are different from the effect of either actinomycin or netropsin on nucleic acid fragments.  相似文献   

11.
The interaction of chromomycin A3 with the oligodeoxyribonucleotides 1, d(ATGCAT), 2, d(ATCGAT), 3, d(TATGCATA), and 4, d(ATAGCTAT), has been investigated by 1H and 31P NMR. In the presence of Mg2+, chromomycin binds strongly to the three GC-containing oligomers 1, 3, and 4 but not to the CG-containing oligomer 2. The proton chemical shift changes for 1 and 3 are similar, and these DNA duplexes appear to bind with a stoichiometry of 2 drugs:1 Mg2+:1 duplex. The same stoichiometry of 2 drugs:1 duplex is confirmed with 4; however, proton chemical shift changes differ. An overall C2 symmetry is exhibited by the drug complex with 1, 3, and 4. At a molar ratio of 2.0 (drugs:duplex), no free DNA proton NMR signals remain. Two-dimensional nuclear Overhauser exchange spectroscopy (NOESY) of the saturated chromomycin complex with 1 and 3 positions both chromomycinone hydroxyls and the E carbohydrates in the minor groove and provides evidence suggesting that the B carbohydrates lie on the major-groove side. This is supported by several dipolar coupling cross-peaks between the drug and the DNA duplex. Drug-induced conformational changes in duplex 1 are evaluated over a range of NOESY mixing times and found to possess some characteristics of both B-DNA and A-DNA, where the minor groove is wider and shallower. A widening of the minor groove is essential for the DNA duplex to accommodate two drug molecules. This current minor-groove model is a substantial revision of our earlier major-groove model [Keniry, M.A., Brown, S.C., Berman, E., & Shafer, R.H. (1987) Biochemistry 26, 1058-1067] and is in agreement with the model recently proposed by Gao and Patel [Gao, X., & Patel, D. J. (1989a) Biochemistry 28, 751-762].  相似文献   

12.
A molecular mechanics and molecular dynamics approach was used to examine the structure of complexes formed between the d(CGCGAATTCGCG)2 duplex and netropsin, distamycin, and four carbocyclic analogues of netropsin and distamycin (1-4). The resulting structures of the ligand-DNA model complexes and their energetics were examined. It is predicted that the compounds 1-4 should have a decreased affinity for the minor groove of AT-rich regions in comparison to netropsin and distamycin. From the energetic analysis it appears that van der Waals and electrostatic interactions are more important than specific hydrogen bonds in stabilizing the ligand-duplex complexes. We predict that compounds 1 and 2 are effectively isohelical with the DNA minor groove. The superior DNA-binding afforded by 1 and 2 in comparison to 3 and 4 results from their more effective penetration into the minor groove and smaller perturbation of molecular structure upon complex formation.  相似文献   

13.
Human cytomegalovirus-induced DNA polymerase and cellular DNA polymerase alpha were purified by successive chromatography on DEAE-cellulose, phosphocellulose, heparin agarose, and single-stranded DNA agarose columns. The purified virus-induced DNA polymerase was resolved to consist of two polypeptides corresponding to molecular weights of 140,000 and 58,000, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Virus-induced DNA polymerase and cellular alpha polymerase were examined for their sensitivities to the triphosphates of 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-methyluracil (FMAUTP), -5-iodocytosine (FIACTP), and -5-methylcytosine (FMACTP). The inhibitive effects of these triphosphates on the DNA polymerases were competitive with regard to the natural substrates; thus FMAUTP competes with dTTP, and FIACTP and FMACTP compete with dCTP. The inhibition constants (Ki) for FMAUTP, FIACTP, and FMACTP of virus-induced DNA polymerase are 0.06, 0.30, and 0.47 microM, respectively. Cellular DNA polymerase alpha is much less sensitive to these inhibitors, and its Ki values for FMAUTP, FIACTP, and FMACTP are 0.45, 3.10, and 2.90 microM, respectively. In addition, human cytomegalovirus-induced DNA polymerase, but not cellular DNA polymerase alpha, can utilize these analog triphosphates as alternate substrates for their corresponding natural deoxyribonucleoside triphosphates in in vitro DNA synthesis.  相似文献   

14.
By means of titration viscometry a number of distinct modes could be resolved for the interaction between the antibiotic netropsin and DNA species of 50, 58, and 69 mole + (A+T) below r = 0.04 netropsin molecules bound per DNA phosphate group. The number of corresponding binding sites increases with a high power of the (A+T) content. The apparent association constants are very high (greater than 10(6) M-1, some perhaps greater than 10(6) M-1) and also rather different for most of the binding sites. It is suggested that some of these interaction modes differ in the number of hydrogen bonds formed between donors of the ligand and acceptors of the binding sites. The interaction modes were characterized quantitatively by their (species-independent) changes of DNA contour length and by the percentage of local DNA stiffening.  相似文献   

15.
Protoplasts of Bacillus megaterium readily reverted to bacillary form in liquid media and when plated in a soft-agar layer onto the surface of appropriate agar media. Three phases of the reversion sequence could be differentiated by phase contrast microscopy: (i) increase in size of the individual protoplasts, (ii) non oriented division of the protoplasts and (iii) outgrowth of the bacillary forms. With time-lapse photomicrography, reversion sequences of single protoplasts were demonstrated.  相似文献   

16.
Thomas CJ  Surolia A 《FEBS letters》1999,445(2-3):420-424
Lipopolysaccharide, the invariant structural component of Gram-negative bacteria, when present in minute amounts in the circulation in humans elicits 'endotoxic shock' syndrome, which is fatal in 60% of the cases. Polymyxin B (PMB), a cyclic cationic peptide, neutralizes the endotoxin, but also induces many harmful side effects. Many peptide-based drugs mimicking the activity of PMB have been synthesized in an attempt to reduce toxicity while still retaining the anti-endotoxic activity. The study attempts to use the recent technique of surface plasmon resonance (SPR), in determining the kinetics of association and dissociation involved in the interaction of endotoxin with a few selected peptides that have structural features resembling PMB. The results, in conjunction with the thermodynamic data derived using isothermal titration calorimetry (ITC), stress the vital role played by amphiphilicity of the peptides and hydrophobic forces in this biologically important interaction.  相似文献   

17.
18.
Osteoclasts are responsible for bone resorption and play an important role in physiological and pathological bone metabolism. Osteoclast migration across bone surfaces is essential for bone resorption, and a previous study demonstrated the role of autophagy in osteoclastogenesis and acid secretion. However, the role of autophagy in osteoclast migration remains unclear. Osteoclast migration requires the successive and rapid assembly and disassembly of podosome rings. In this study, we show that kindlin3, an important adaptor protein in the podosome, can interact with LC3B and undergo autophagy-mediated protein degradation to promote the disassembly of the podosome.Moreover, further analyses showed that the inhibition of autophagy increased kindlin3 levels and enhanced the interaction between kindlin3 and integrin β3. The over activation of integrins inhibits the disassembly of obsolete podosome rings, resulting in disorganization of the actin cytoskeleton and impaired migration in osteoclasts. Our results show that LC3B affects osteoclast migration and FAK/AKT activation by modulating integrin activation via a kindlin3-mediated inside-out signal from the extracellular matrix. Based on these results, we propose that LC3 is an important target for regulating osteoclast migration.  相似文献   

19.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

20.
We previously identified a highly conserved 98-nucleotide (nt) sequence, the 3'X, as the extreme 3'-terminal structure of the hepatitis C virus (HCV) genome (T. Tanaka, N. Kato, M.-J. Cho, and K. Shimotohno, Biochem. Biophys. Res. Commun. 215:744-749, 1995). Since the 3' end of positive-strand viral RNA is the initiation site of RNA replication, the 3'X should contribute to HCV negative-strand RNA synthesis. Cellular factors may also be involved in this replication mechanism, since several cellular proteins have been shown to interact with the 3'-end regions of other viral genomes. In this study, we found that both 38- and 57-kDa proteins in the human hepatocyte line PH5CH bound specifically to the 3'-end structure of HCV positive-strand RNA by a UV-induced cross-linking assay. The 57-kDa protein (p57), which had higher affinities to RNA probes, recognized a 26-nt sequence including the 5'-terminal 19 nt of the 3'X and 7 flanking nt, designated the transitional region. This sequence contains pyrimidine-rich motifs and shows similarity to the consensus binding sequence of the polypyrimidine tract-binding protein (PTB), which has been implicated in alternative pre-mRNA splicing and cap-independent translation. We found that this 3'X-binding p57 is identical to PTB. The 3'X-binding p57 was immunoprecipitated by anti-PTB antibody, and recombinant PTB bound to the 3'X RNA. In addition, p57 bound solely to the 3'-end region of positive-strand RNA, not to this region of negative-strand RNA. We suggest that 3'X-PTB interaction is involved in the specific initiation of HCV genome replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号