首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylation of lysine 56 of histone H3 (H3-Lys-56) occurs in S phase and disappears during G(2)/M phase of the cell cycle. However, it is not clear how this modification is regulated during the progression of the cell cycle. We and others have shown that the histone acetyltransferase (HAT) Rtt109 is the primary HAT responsible for acetylating H3-Lys-56 in budding yeast. Here we show that Rtt109 forms a complex with Vps75 and that both recombinant Rtt109-Vps75 complexes and native complexes purified from yeast cells acetylate H3 present in H3/H4/H2A/H2B core histones but not other histones. In addition, both recombinant and native Rtt109-Vps75 HAT complexes exhibited no detectable activity toward nucleosomal H3, suggesting that H3-Lys-56 acetylation is at least in part regulated by the inability of Rtt109-Vps75 complexes to acetylate nucleosomal H3 during G(2)/M phase of the cell cycle. Further, Rtt109 bound mutant H3/H4 tetramers composed of histones lacking their N-terminal tail domains less efficiently than wild-type H3/H4 tetramers, and Rtt109-Vps75 complexes displayed reduced HAT activity toward these mutant H3/H4 tetramers. Thus, the N termini of H3/H4 tetramers are required for efficient acetylation of H3 by the Rtt109-Vps75 complex. Taken together, these studies provide insights into how H3-Lys-56 acetylation is regulated during the cell cycle.  相似文献   

2.
Histone H3 and H4 gene deletions in Saccharomyces cerevisiae   总被引:7,自引:1,他引:6       下载免费PDF全文
The genome of haploid Saccharomyces cerevisiae contains two nonallelic sets of histone H3 and H4 genes. Strains with deletions of each of these loci were constructed by gene replacement techniques. Mutants containing deletions of either gene set were viable, however meiotic segregants lacking both histone H3 and H4 gene loci were inviable. In haploid cells no phenotypic expression of the histone gene deletions was observed; deletion mutants had wild-type growth rates, were not temperature sensitive for growth, and mated normally. However, diploids homozygous for the H3-H4 gene deletions were slightly defective in their growth and cell cycle progression. The generation times of the diploid mutants were longer than wild-type cells, the size distributions of cells from exponentially growing cultures were skewed towards larger cell volumes, and the G1 period of the mutant cells was longer than that of the wild-type diploid. The homozygous deletion of the copy-II set of H3-H4 genes in diploids also increased the frequency of mitotic chromosome loss as measured using a circular plasmid minichromosome assay.  相似文献   

3.
In all eukaryotes, multisubunit histone acetyltransferase (HAT) complexes acetylate the highly conserved lysine residues in the amino-terminal tails of core histones to regulate chromatin structure and gene expression. One such complex in yeast, NuA4, specifically acetylates nucleosome-associated histone H4. Recent studies have revealed that NuA4 comprises at least 11 subunits, including Yng2p, a yeast homolog of the candidate human tumor suppressor gene, ING1. Consistent with prior data, we find that cells lacking Yng2p are deficient for NuA4 activity and are temperature-sensitive. Furthermore, we show that the NuA4 complex is present in the absence of Yng2p, suggesting that Yng2p functions to maintain or activate NuA4 HAT activity. Sporulation of diploid yng2 mutant cells reveals a defect in meiotic progression, whereas synchronized yng2 mutant cells display a mitotic delay. Surprisingly, genome-wide expression analysis revealed little change from wild type. Nocodazole arrest and release relieves the mitotic defects, suggesting that Yng2p may have a critical function prior to or during metaphase. Rather than a uniform decrease in acetylated forms of histone H4, we find striking cell-to-cell heterogeneity in the loss of acetylated histone H4 in yng2 mutant cells. Treating yng2 mutants with the histone deacetylase inhibitor trichostatin A suppressed the mitotic delay and restored global histone H4 acetylation, arguing that reduced H4 acetylation may underlie the cell cycle delay.  相似文献   

4.
5.
Post-translational modifications (PTMs) of histones play important roles in regulating the structure and function of chromatin in eukaryotes. Although histone PTMs were considered to mainly occur at the N-terminal tails of histones, recent studies have revealed that PTMs also exist in the histone-fold domains, which are commonly shared among the core histones H2A, H2B, H3, and H4. The lysine residue is a major target for histone PTM, and the lysine to glutamine (KQ) substitution is known to mimic the acetylated states of specific histone lysine residues in vivo. Human histones H3 and H4 contain 11 lysine residues in their histone-fold domains (five for H3 and six for H4), and eight of these lysine residues are known to be targets for acetylation. In the present study, we prepared 11 mutant nucleosomes, in which each of the lysine residues of the H3 and H4 histone-fold domains was replaced by glutamine: H3 K56Q, H3 K64Q, H3 K79Q, H3 K115Q, H3 K122Q, H4 K31Q, H4 K44Q, H4 K59Q, H4 K77Q, H4 K79Q, and H4 K91Q. The crystal structures of these mutant nucleosomes were determined at 2.4-3.5 ? resolutions. Some of these amino acid substitutions altered the local protein-DNA interactions and the interactions between amino acid residues within the nucleosome. Interestingly, the C-terminal region of H2A was significantly disordered in the nucleosome containing H4 K44Q. These results provide an important structural basis for understanding how histone modifications and mutations affect chromatin structure and function.  相似文献   

6.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

7.
8.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

9.
N-terminal modifications of nucleosomal core histones are involved in gene regulation, DNA repair and recombination as well as in chromatin modeling. The degree of individual histone modifications may vary between specific chromatin domains and throughout the cell cycle. We have studied the nuclear patterns of histone H3 and H4 acetylation and of H3 methylation in Arabidopsis. A replication-linked increase of acetylation only occurred at H4 lysine 16 (not for lysines 5 and 12) and at H3 lysine 18. The last was not observed in other plants. Strong methylation at H3 lysine 4 was restricted to euchromatin, while strong methylation at H3 lysine 9 occurred preferentially in heterochromatic chromocenters of Arabidopsis nuclei. Chromocenter appearance, DNA methylation and histone modification patterns were similar in nuclei of wild-type and kryptonite mutant (which lacks H3 lysine 9-specific histone methyltransferase), except that methylation at H3 lysine 9 in heterochromatic chromocenters was reduced to the same low level as in euchromatin. Thus, a high level of H3methylK9 is apparently not necessary to maintain chromocenter structure and does not prevent methylation of H3 lysine 4 within Arabidopsis chromocenters.  相似文献   

10.
11.
Dahl J  Chen HI  George M  Benjamin TL 《Journal of virology》2007,81(18):10064-10071
Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G(2) and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominantly in G(2). These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.  相似文献   

12.
13.
SCN- binds to the charged amino group of lysines, inducing local changes in the electrostatic free energy of histones. We exploited this property to selectively perturb the histone-DNA interactions involved in the stabilization of eu and heterochromatin. Differential scanning calorimetry (DSC) was used as leading technique in combination with trypsin digestion that selectively cleaves the histone end domains. Euchromatin undergoes progressive destabilization with increasing KSCN concentration from 0 to 0.3 M. Trypsin digestion in the presence of 0.2 M KSCN show that the stability of the linker decreases as a consequence of the competitive binding of SCN- to the amino groups located in the C and N-terminal domain of H1 and H3, respectively; likewise, the release of the N-terminal domain of H4 induces an appreciable depression in both the temperature and enthalpy of melting of core particle DNA. Unfolding of heterochromatin requires, in addition to further cleavage of H4, extensive digestion of H2A and H2B, strongly suggesting that these histones stabilize the higher order structure by forming a protein network which extends throughout the heterochromatin domain.  相似文献   

14.
The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen 1 (LANA-1) is required for the replication of episomal viral genomes. Regions in its N-terminal and C-terminal domains mediate the interaction with host cell chromatin. Several cellular nuclear proteins, e.g., BRD2/RING3, histones H2A and H2B, MeCP2, DEK, and HP1alpha, have been suggested to mediate this interaction. In this work, we identify the double-bromodomain proteins BRD4 and BRD3/ORFX as additional LANA-1 interaction partners. The carboxy-terminal region of the short variant of BRD4 (BRD4S) containing the highly conserved extraterminal domain directly interacts with an element in the LANA-1 carboxy-terminal domain. We show that ectopically expressed BRD4S and BRD2/RING3 delay progression into the S phase of the cell cycle in epithelial and B-cell lines and increase cyclin E promoter activity. LANA-1 partly releases epithelial and B cells from a BRD4S- and BRD2/RING3-induced G1 cell cycle arrest and also promotes S-phase entry in the presence of BRD4S and BRD2/RING3. This is accompanied by a reduction in BRD4S-mediated cyclin E promoter activity. Our data are in keeping with the notion that the direct interaction of KSHV LANA-1 with BRD4 and other BRD proteins could play a role in the G1/S phase-promoting functions of KSHV LANA-1. Further, our data support a model in which the LANA-1 C terminus contributes to a functional attachment to acetylated histones H3 and H4 via BRD4 and BRD2, in addition to the recently demonstrated direct interaction (A. J. Barbera, J. V. Chodaparambil, B. Kelley-Clarke, V. Joukov, J. C. Walter, K. Luger, and K. M. Kaye, Science 311:856-861, 2006) of the LANA-1 N terminus with histones H2A and H2B.  相似文献   

15.
16.
SUV39H1, a human homologue of the Drosophila position effect variegation modifier Su(var)3-9 and of the Schizosaccharomyces pombe silencing factor clr4, encodes a novel heterochromatic protein that transiently accumulates at centromeric positions during mitosis. Using a detailed structure-function analysis of SUV39H1 mutant proteins in transfected cells, we now show that deregulated SUV39H1 interferes at multiple levels with mammalian higher-order chromatin organization. First, forced expression of full-length SUV39H1 (412 amino acids) redistributes endogenous M31 (HP1beta) and induces abundant associations with inter- and metaphase chromatin. These properties depend on the C-terminal SET domain, although the major portion of the SUV39H1 protein (amino acids 89 to 412) does not display affinity for nuclear chromatin. By contrast, the M31 interaction surface, which was mapped to the first 44 N-terminal amino acids, together with the immediately adjacent chromo domain, directs specific accumulation at heterochromatin. Second, cells overexpressing full-length SUV39H1 display severe defects in mitotic progression and chromosome segregation. Surprisingly, whereas localization of centromere proteins is unaltered, the focal, G(2)-specific distribution of phosphorylated histone H3 at serine 10 (phosH3) is dispersed in these cells. This phosH3 shift is not observed with C-terminally truncated mutant SUV39H1 proteins or with deregulated M31. Together, our data reveal a dominant role(s) for the SET domain of SUV39H1 in the distribution of prominent heterochromatic proteins and suggest a possible link between a chromosomal SU(VAR) protein and histone H3.  相似文献   

17.
18.
《The Journal of cell biology》1990,111(5):1753-1762
We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM- 26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26- induced G2 arrest of the cell.  相似文献   

19.
The human UHRF1 protein (ubiquitin-like containing PHD and RING finger domains 1) has emerged as a potential cancer target due to its implication in cell cycle regulation, maintenance of DNA methylation after replication and heterochromatin formation. UHRF1 functions as an adaptor protein that binds to histones and recruits histone modifying enzymes, like HDAC1 or G9a, which exert their action on chromatin. In this work, we show the binding specificity of the PHD finger of human UHRF1 (huUHRF1-PHD) towards unmodified histone H3 N-terminal tail using native gel electrophoresis and isothermal titration calorimetry. We report the molecular basis of this interaction by determining the crystal structure of huUHRF1-PHD in complex with the histone H3 N-terminal tail. The structure reveals a new mode of histone recognition involving an extra conserved zinc finger preceding the conventional PHD finger region. This additional zinc finger forms part of a large surface cavity that accommodates the side chain of the histone H3 lysine K4 (H3K4) regardless of its methylation state. Mutation of Q330, which specifically interacts with H3K4, to alanine has no effect on the binding, suggesting a loose interaction between huUHRF1-PHD and H3K4. On the other hand, the recognition appears to rely on histone H3R2, which fits snugly into a groove on the protein and makes tight interactions with the conserved aspartates D334 and D337. Indeed, a mutation of the former aspartate disrupts the formation of the complex, while mutating the latter decreases the binding affinity nine-fold.  相似文献   

20.
Donor cell type, cell-cycle stage, and passage number of cultured cells all affect the developmental potential of cloned embryos. Because acetylation of the histones on nuclear chromatin is an important aspect of gene activation, the present study investigated the differences in histone acetylation of bovine fibroblast and cumulus cells at various passages and cell-cycle stages. The acetylation was qualitatively analyzed by epifluorescent confocal microscopy and quantitatively by immunofluorescent flow cytometry. Specifically, we studied levels of histone H4 acetylated at lysine 8 and histone H3 acetylated at lysine 18; acetylation at these lysine residues is among the most common for these histone molecules. We also studied levels of linker histone H1 in donor cells. Our results show that stage of cell cycle, cell type, and number of cell passages all had an effect on histone content. Histone H1 and acetyl histone H3 increased with cell passage (passages 5-15) in G0/G1- and G2/M-stage cumulus and fibroblast cells. We also found that acetyl histone H4 was lower in early versus late cell passages (passage 5 vs. 15) for G0/G1-stage cumulus cells. In both cell types examined, acetyl histones increased with cell-cycle progression from G0/G1 into the S and G2/M phases. These results indicate that histone acetylation status is remodeled by in vitro cell culture, and this may have implications for nuclear transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号