首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of brassinosteroids (BRs) in hyponastic growth induced by submergence was investigated in Arabidopsis thaliana. Under flooding conditions, exogenously applied BRs increased hyponastic growth of rosette leaves. This hyponastic growth was reduced in a BR insensitive mutant (bri1-5), while it was increased in a BR dominant mutant (bes1-D). Further, expression of hypoxia marker genes, HRE1 and HRE2, was elevated in submerged bes1-D. These results indicate that BRs exert a positive action on hyponastic growth of submerged Arabidopsis leaves. Expression of ethylene biosynthetic genes, such as ACS6, ACS8 and ACO1, which are up-regulated by submergence, was also activated by application of BRs and in bes1-D. The enhanced hyponastic growth in submerged bes1-D was significantly reduced by application of cobalt ion, suggesting that BRs control hyponastic growth via ethylene, which seems to be synthesized by ACO6 and ACO8 followed by ACO1 in submerged leaves. A double mutant, bes1-Dxaco1-1, showed hyponastic growth activity similar to that seen in aco1-1, demonstrating that the BR signaling for regulation of hyponastic growth seems to be an upstream event in ethylene-induced hyponastic growth under submergence in Arabidopsis.  相似文献   

2.
3.
4.

Key message

A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4.

Abstract

Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar ‘Zhonghui 8006’ (ZH8006) and a japonica rice ‘Wuyunjing 8’ (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.
  相似文献   

5.

Key message

A novel dwarf cucumber mutant, scp-2, displays a typical BR biosynthesis-deficient phenotype, which is due to a mutation in CsDET2 for a steroid 5-alpha-reductase.

Abstract

Brassinosteroids (BRs) are a group of plant hormones that play important roles in the development of plant architecture, and extreme dwarfism is a typical outcome of BR-deficiency. Most cucumber (Cucumis sativus L.) varieties have an indeterminate growth habit, and dwarfism may have its value in manipulation of plant architecture and improve production in certain production systems. In this study, we identified a spontaneous dwarf mutant, super compact-2 (scp-2), that also has dark green, wrinkle leaves. Genetic analyses indicated that scp-2 was different from two previously reported dwarf mutants: compact (cp) and super compact-1 (scp-1). Map-based cloning revealed that the mutant phenotype was due to two single nucleotide polymorphism and a single-base insertion in the CsDET2 gene that resulted in a missense mutation in a conserved amino acid and thus a truncated protein lacking the conserved catalytic domains in the predicted steroid 5α-reductase protein. Measurement of endogenous hormone levels indicated a reduced level of brassinolide (BL, a bioactive BR) in scp-2, and the mutant phenotype could be partially rescued by the application of epibrassinolide (EBR). In addition, scp-2 mutant seedlings exhibited dark-grown de-etiolation, and defects in cell elongation and vascular development. These data support that scp-2 is a BR biosynthesis-deficient mutant, and that the CsDET2 gene plays a key role in BR biosynthesis in cucumber. We also described the systemic BR responses and discussed the specific BR-related phenotypes in cucumber plants.
  相似文献   

6.
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.  相似文献   

7.
8.

Key message

Shuhui498 (R498) is an elite parent of heavy panicle hybrid rice by pyramiding the rare gn1a and null gs3 alleles. This finding reveals the genetic basis and great potential application in future breeding of R498.

Abstract

The heavy panicle trait, defined as 5 g or more of grain weight per panicle, is one of the target traits in super-high-yield rice breeding programs. The use of heavy panicle-type hybrid rice has been shown to be a successful strategy for super-high-yield breeding programs, particularly under the environmental conditions of high humidity and deficient solar radiation in southwestern China. However, the genetic components of the heavy panicle trait in hybrid rice remain elusive. Here, we report that the combination of loss-of-function mutations in Grain number 1a (Gn1a) and Grain Size 3 (GS3) is responsible for the heavy panicle phenotype of the elite hybrid rice restorer line Shuhui498 (R498). The null gn1a allele is the determinant factor for heavy panicles through increased grain number, while gs3 is associated with grain size and weight. R498 pyramided the two major null alleles, resulting in heavy panicles with a high grain number and large grains. Clustering analysis revealed that the null gn1aR498 allele is a rare haplotype which has been innovatively utilized in R498, underscoring the great potential of R498 for breeding purposes. Our research thus sheds light on the distinct genetic compositions of heavy panicle-type rice and may potentially facilitate super-high-yield rice breeding.
  相似文献   

9.
Brassinosteroids (BRs) are steroidal hormones that play crucial roles in various processes of plant growth and development. DWF1 encodes a delta(24)-sterol reductase that participates in one of the early stage in the brassinosteroids’ biosynthetic pathway: the conversion of 24-methylenecholesterol to campesterol. Here we report the isolation and expression of one DWF1 homologous gene, PeDWF1, in moso bamboo (Phyllostachys edulis (Carrière) J. Houz.). Sequence analysis revealed that the open reading frame of PeDWF1 was 1686-bp encoding a protein composed of 561 amino acid residues with a calculated molecular weight of 65.1 kD and a theoretic isoelectric point of 8.32. Phylogenetic analysis indicated that PeDWF1 was very close to the cell elongation protein Dwarf1 in rice (Oryza sativa). Furthermore, transient expression of a PeDWF1::GFP fusion protein showed that PeDWF1 was an integral membrane protein most probably associated with the endoplasmic reticulum similar to Dwarf1. Tissue specific expression analysis showed that PeDWF1 was constitutively expressed in moso bamboo with the highest level in shoots and the lowest level in mature leaves. In the early growing stage of shoots, the expression level of PeDWF1 had a rising trend with the increasing height of shoots. These results indicated that PeDWF1 might be involved in the regulation of shoot development by participating in BRs biosynthesis. Moreover, PeDWF1 was heterologously expressed in Escherichia coli and the recombinant protein was about 65 kD, which facilitated further study on the gene function of PeDWF1 in bamboo.  相似文献   

10.
11.
12.
13.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

14.
The ZRT-and IRT-like proteins (ZIP) comprise a large family of transition metal transporters in plants that have diverse functions to transport zinc, iron, copper, etc. Here, we provided a complete overview of this gene family in rice (Oryza sativa L.). Based on the hidden Markov model and BLAST analysis, a total of 17 ZIP-coding genes were identified and further studied by semi-quantitative RT-PCR analysis. Sequence analysis revealed 17 putative genes distributed randomly on eight chromosomes. Although most of the predicted proteins had typical characteristics of the ZIP protein family, the extent of their sequence similarity varied considerably. The expression patterns of OsZIP1, OsZIP3, and OsZIP4, which encode Zn2+ transporters in rice, were studied in the Zn-efficient and Zn-inefficient rice genotypes (IR8192 and Erjiufeng) by semi-quantitative RT-PCR analysis of roots, shoots, and panicle from the plants grown under Zn deficiency and normal conditions. OsZIP1 was expressed only in the roots and very weakly if at all in the panicles, while the other two genes were expressed in all parts of plants under study. The Zn-deficient conditions up-regulated the expression of OsZIP1, OsZIP3, and OsZIP4 in the roots and that of OsZIP4 in the shoots of both genotypes, indicating that all these genes may participate in rice zinc nutrition. Furthermore, the expression of OsZIP3 and OsZIP4 was found to be much stronger in the roots of IR8192 than those of Erjiufeng, which suggests that these genes may contribute to high Zn efficiency in rice. The expression patterns and the roles of other OsZIPs are also discussed on the basis of the phylogenetic tree of ZIP proteins and RT-PCR analysis of the two rice genotypes with different zinc efficiency.  相似文献   

15.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

16.
17.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

18.
19.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.  相似文献   

20.

Key message

A Brd2 allele suppresses heading date by altering the expression of heading date regulators such as OsMADS50 , and also negatively regulates chlorophyll biosynthesis.

Abstract

Heading date and plant height are important determinants of yield in rice (Oryza sativa L.). In this study, we characterized a late heading, dwarf mutant known as lhdd10 selected following ethyl methane sulfonate (EMS)-treatment of ssp. indica cultivar 93-11. lhdd10 showed late heading, dwarfness and slightly darker-green leaves than wild-type 93-11 under long-day and short-day conditions. We isolated lhdd10 by map-based cloning; it encoded a putative FAD-linked oxidoreductase protein (a brassinosteroid biosynthetic gene) that localized to the nucleus. LHDD10 was constitutively expressed in various tissues, but more so in shoot apices and panicles. Our data showed that lhdd10 influences heading date by controlling the expression of heading date regulators, such as OsMADS50 in both LD and SD conditions. lhdd10 also negatively regulated expression of chlorophyll biosynthetic genes to reduce the chlorophyll content. Our data indicated that BRs play important roles in regulating heading date and chlorophyll biosynthesis. This work provides material that will allow study of how BRs regulate heading date in rice.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号