首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water‐use efficiency through modifications in both stomatal (gs) and mesophyll conductances (gm). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (Sc). In addition, the lower gm/Sc ratio for a given porosity in drought‐acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought‐associated changes in the morphological properties of stomata, in an accession and treatment‐dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level.  相似文献   

2.
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO2 levels. Leaves of elevated CO2 plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO2 plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf developmental order. The effects of elevated CO2 on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grown at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO2 on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated C02 may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO2 levels predicted to occur within the next century.  相似文献   

3.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   

4.
Wang J L  Yu G R  Fang Q X  Jiang D F  Qi H  Wang Q F 《农业工程》2008,28(2):525-533
Photosynthesis coupled with transpiration determines water use efficiency (WUE) at leaf level, and the responses of WUE controlled by gas exchanges through stomata to environment are the basis of carbon and water cycles in the ecosystem. In this paper, by using Li-6400 Portable Photosynthesis System (LI-COR), WUE at leaf level was analyzed under controlled photosynthetic photons flux density (PPFD) and CO2 concentration conditions across 9 plant species including maize (Zea mays), sorghum (Sorghum vulgare), millet (Setaria italica), soybean (Glycine max), peanut (Arachis phyogaea), sweet potato (Ipomoea batatas), rice (Oryza sativa), Masson pine (Pinus massoniana) and Schima superba. We had developed a new model to estimate the water use efficiency in response to the combined effects of light and CO2 concentration. Our measured data validated that this model could simulate the changes of water use efficiency very well under combined effect of light and CO2 concentration. It could be used to estimate contribution of photosynthesis increase and transpiration decline on water use efficiency with the rising of CO2 concentration. Great differences in water use efficiency occurred in these different plant species under various CO2 concentration levels. Based on water use efficiency at regional scale, we concluded that plants should be separated into C3 plants and C4 plants, and furthermore, C3 plants should be separated into herbaceous plants and woody plants. Our separation criteria would do a great favor in modeling the evapotranspiration of terrestrial ecosystem with carbon and water balance.  相似文献   

5.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

6.
Elevation in atmospheric CO2 concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO2 on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO2 would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO2 decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO2 also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO2 increased plant height and aboveground biomass. Additionally, elevated CO2 increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO2 increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO2 reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus‐infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO2 makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO2 conditions.  相似文献   

7.
CO2 exchange, transpiration and leaf water potential of Welwitschia mirabilis were measured in three contrasting habitats of the Namib desert. From these measurements stomatal conductance, internal CO2concentration and WUE were calculated. In two of the three habitats photosynthetic CO2 uptake decreased and transpiration increased with increasing leaf age while in the third habitat CO2 uptake increased and transpiration decreased with leaf age. Except for the stomata of young leaf sections in this habitat, stomata closed with increasing δw leading to a pronounced midday depression of CO2 uptake. The high stomatal limitation of photosynthetic CO2 uptake of glasshouse-grown plants was verified in the natural habitat. Photosynthetic CO2 uptake saturated between 800 and 1300 μmol photons m?2 s?1depending on leaf age and habitat. CO2 uptake had a broad temperature optimum declining significantly beyond 32 °C. Predawn leaf water potential reflected water availability and atmospheric conditions in the three habitats and ranged from ? 2.5 to ? 6.2 MPa. There was a pronounced diurnal course of leaf water potential in all habitats. During the day a gradient in water potential developed along the leaf axis with the lowest potential at the leaf's tip. With respect to whole plant balances of CO2 exchange and transpiration, there were marked differences between Welwitschias in the three habitats. Despite a negative CO2 balance over a period of five months, leaves in the driest habitat grew constantly at the expense of carbon reserves in the plant. Only at the wettest site did carbon gain exceed carbon demand for growth. The WUE of whole plants was insignificant in all habitats. The results were as contrasting as the habitats and plants and did not allow generalisations about adaptational features of Welwitschia mirabilis.  相似文献   

8.
Differences in the photosynthetic performance between pairs of heat tolerant (HT) and heat sensitive (HS) accessions of tuber-bearing Solanum species were measured at 40 °C, after treating plants at 40/30 °C. After 1 to 9 days of heat treatment, both HT and HS accessions showed progressive inhibitory effects, primarily decreased rates of CO2 fixation, and loss of leaf chlorophyll. These effects were most pronounced in the HS accessions. Stomatal conductivity and internal CO2 concentrations were lower for both accessions at 40 °C especially for the HS accessions, suggesting that at ambient CO2 concentrations, stomatal conductance was limiting CO2 availability at the higher temperature. In the HT accessions, stomatal limitations were largely attributed to differences in vapor pressure deficit between 25° and 40 °C, while the HS accessions exhibited significant nonstomatal limitations. The young expanding leaves of the HS accession showed some HT characteristics, while the oldest leaves showed severe senescence symptoms after 9 days at 40/30 °C. The data suggest that differences in heat sensitivity between HT and HS accessions are the result of accelerated senescence, chlorophyll loss, reduced stomatal conductance, and inhibition of dark reactions at high temperature.  相似文献   

9.
Seedlings of Vicia faba L. were grown in open-top growth chambers at present (P=350μmol?1) and at elevated (E=700μmol mol?1) atmospheric CO2 concentration. The effects of CO2 enrichment on the first phase of growth after germination were examined over 45 d. There were no positive effects of CO2 enrichment on growth of the seedlings during this early phase. No differences were observed in leaf area or in total dry weight. No differences were found in morphology or anatomy of the leaves. The numbers of stomatal and epidermal cells, thickness of leaf, of epidermis and of mesophyll cell-layers were unaffected by CO2 enrichment. Also, no differences were observed in leaf concentrations of chlorophyll, reducing carbohydrates or starch. These results contrast markedly with results from similar experiments on poplar hybrids and Phaseolus vulgaris obtained in the same growth facility. It seems that the intitial growth is under internal control such that the atmospheric CO2 concentration has no effects. The lack of response in this case may be attributed to the presence and longevity of the large cotyledons which provided available substrate for growth.  相似文献   

10.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   

11.
冬小麦光合特征及叶绿素含量对保水剂和氮肥的响应   总被引:9,自引:0,他引:9  
以不施保水剂和氮(N)肥为对照,测定了保水剂(60 kg·hm-2)与不同N肥水平(0、225、450 kg·hm-2)及其配施条件下大田小麦的光合特征、叶绿素含量和水分利用效率等指标,研究了冬小麦拔节期和灌浆期光合生理特征、叶绿素含量及水分利用对保水剂和N肥的响应.结果表明:灌浆期各处理的光合速率、气孔导度、胞间CO2浓度、叶片水分利用效率及叶绿素含量均大于拔节期.在拔节期,单施N肥条件下,随施N量的增加,单叶水分利用效率提高,光合速率、气孔导度、胞间CO2浓度及蒸腾速率均先增后减;225 kg·hm-2 N肥处理的叶绿素含量最高.施用保水剂后,随施N量的增加,胞间CO2浓度降低,而光合速率等均提高;单施保水剂及其与N肥配施提高了叶绿素含量,而过多N肥效果不显著在灌浆期,单施N肥显著提高了小麦的光合速率及水分利用效率,降低了气孔导度、胞间CO2浓度及蒸腾速率;叶绿素含量随N肥用量的增加而增加.施用保水剂后,随N肥用量的增加,光合速率和叶片水分利用效率均先增后减,而胞间CO2浓度和蒸腾速率先减后增,但均低于对照,气孔导度随施N量的增加而提高.单施保水剂的叶绿素含量显著提高,但其与N肥配施叶绿素含量有所降低.保水剂与N肥配合施用显著提高了小麦的千粒重、产量及水分生产效率.其中,保水剂与225 kg·hm-2N肥配施处理的产量及水分生产效率均最高.  相似文献   

12.
Rice (Oryza sativa[L.] cv. IR-72) was grown for a season in sunlit, controlled-environment chambers at 350 or 700 µmol CO2 mol?1 under continuously flooded (unstressed) or drought-imposed periods at panicle initiation (stressed). The midday canopy photosynthetic rates (Pn), measured at the CO2 concentration ([CO2]) used for growth, were enhanced by high [CO2] but reduced by drought. High [CO2] increased Pn by 18 to 34% for the unstressed plants, and 6 to 12% for the stressed plants. In the unstressed plants, CO2 enrichment increased water-use efficiency (WUE) by 26%, and reduced evapotranspiration (ET) by 8 to 14%. Both high [CO2] and severe drought decreased the activity and content of ribulose bisphosphate carboxylase-oxygenase (Rubisco). High-CO2-unstressed plants had 6 to 22% smaller content and 5 to 25%, lower activity of Rubisco than ambient-CO2-unstressed plants. Under severe drought, reductions of Rubisco were 53 and 27% in activity and 40 and 12% in content, respectively, for ambient- and high-CO2 treatments. The apparent catalytic turnover rate (Kcat) of midday fully activated Rubisco was not altered by high [CO2], but severe drought reduced Kcat by 17 to 23%. Chloroplasts of the high-CO2 leaves contained more, and larger starch grains than those of the ambient CO2 leaves. High [CO2] did not affect the leaf sucrose content of unstressed plants. In contrast, severe drought reduced the leaf starch and increased the sucrose content in both CO2 treatments. The activity of leaf sucrose phosphate synthase of unstressed plants was not affected by high [CO2], whereas that of ambient-CO2-grown plants was reduced 45% by severe drought. Reduction in ET and enhancements in both Pn and WUE for rice grown under high [CO2] helped to delay the adverse effects of severe drought and allowed the stressed plants to assimilate CO2 for an extra day. Thus, rice grown in the next century may utilize less water, use water more efficiently, and be able to tolerate drought better under some situations.  相似文献   

13.
Water‐use efficiency (WUE) has been recognized as an important characteristic of ecosystem productivity, which links carbon (C) and water cycling. However, little is known about how WUE responds to climate change at different scales. Here, we investigated WUE at leaf, canopy, and ecosystem levels under increased precipitation and warming from 2005 to 2008 in a temperate steppe in Northern China. We measured gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), evapotranspiration (ET), evaporation (E), canopy transpiration (Tc), as well as leaf photosynthesis (Pmax) and transpiration (Tl) of a dominant species to calculate canopy WUE (WUEc=GEP/T), ecosystem WUE (WUEgep=GEP/ET or WUEnee=NEE/ET) and leaf WUE (WUEl=Pmax/Tl). The results showed that increased precipitation stimulated WUEc, WUEgep and WUEnee by 17.1%, 10.2% and 12.6%, respectively, but decreased WUEl by 27.4%. Climate warming reduced canopy and ecosystem WUE over the 4 years but did not affect leaf level WUE. Across the 4 years and the measured plots, canopy and ecosystem WUE linearly increased, but leaf level WUE of the dominant species linearly decreased with increasing precipitation. The differential responses of canopy/ecosystem WUE and leaf WUE to climate change suggest that caution should be taken when upscaling WUE from leaf to larger scales. Our findings will also facilitate mechanistic understanding of the C–water relationships across different organism levels and in projecting the effects of climate warming and shifting precipitation regimes on productivity in arid and semiarid ecosystems.  相似文献   

14.
We investigated the seasonal variability of effects of elevated temperature (+3.5°C), CO2 elevation (700 μmol mol−1) and varying water regimes (high to low water content) on physiological responses and biomass growth of reed canary grass (Phalaris arundinacea L., local field-grown cultivar) grown in a boreal environment. In controlled environment greenhouses, various physiological and growth parameters of grass, i.e., light-saturated net photosynthetic rates (P nmax), water use efficiency (WUE) and optimal photochemical efficiency of photosystem II (F v/F m), and leaf area development and biomass of plant organs (leaf, stem, coarse, and fine root) were measured. During the early measurement periods, elevated temperature enhanced leaf photosynthesis and above-ground biomass of reed canary grass; however, this resulted in earlier senescence and lower biomass at the end of measurement period, compared to ambient temperature. This effect was more pronounced under water limitation. Elevated CO2 enhanced P nmax, WUE, and leaf area and total plant biomass (above- and below-ground) over growing season. The explanation for imbalance between stimulated photosynthesis and increase in above-ground biomass was that CO2 enrichment causes a greater increase in the plant’s root system. The combination of elevated temperature and CO2 slightly increases the growth of plant. Adequate water availability favored photosynthesis and biomass growth of reed canary grass. The temperature- and drought-induced stresses were partially mitigated by elevated CO2. Other cultivars should be tested in order to identify those that are better adapted to elevated temperatures and CO2 and variable water levels.  相似文献   

15.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   

16.
Wind increases leaf water use efficiency   总被引:1,自引:0,他引:1       下载免费PDF全文
A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf‐scale analysis suggests that the observed global decrease in near‐surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long‐term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re‐evaluation of the role of wind in plant water relations and potential re‐interpretation of temporal and geographic trends in leaf sizes.  相似文献   

17.
Siebold’s beech (Fagus crenata) is a common species in the cool temperate forests of Japan. As the natural regeneration of beech forests is expected to contribute to forest conservation in the future, we investigated the effects of different CO2 concentrations ([CO2]) on the growth of beech seedlings in relation to morphological and physiological changes. Acorns collected from beech forest in Minakami, central Japan were germinated and grown during a first growing season of 6 months under four [CO2] levels (200, 350, 550, and 750 μL L−1). Stem mass increased with increasing [CO2]; however, root mass did not change significantly among the treatments. As [CO2] increased, net photosynthetic rate (P n) and leaf area increased, whereas transpiration (T r), stomatal conductance, leaf chlorophyll content, and leaf longevity decreased. Although water-use efficiency (WUE; i.e., P n/T r) improved with increasing [CO2], the density of stomata did not significantly change. Increases in the number of buds and the terminal bud length with increasing [CO2] indicated accelerated formation of additional branches and leaves in the next season. The enhanced WUE levels seen in beech saplings growing under the higher environmental [CO2] levels that are expected in the future may be advantageous for their survival, considering that beech saplings prefer mesic conditions.  相似文献   

18.
A pot experiment was conducted in a glasshouse to clarify and quantify the effect of plant part, water regime, growth period, and cultivar on carbon isotope discrimination (CID), and to analyze the relationship between CID, stomatal behavior and water-use efficiency (WUE). The experiment was comprised of two upland rice (Oryza sativa L.) cultivars and three water regimes (100, 70, and 40% of saturation moisture) in a completely randomized design. Plants were harvested at tillering, flowering, and maturity. No significant cultivar differences in above-ground dry matter-based WUE (WUEA) and total dry matter-based WUE (WUET) were observed. WUEA (and WUET) increased with water stress up to tillering, but decreased with water stress after tillering. Significant cultivar differences in CID in all the analyzed plant parts were observed at all harvest times. Reduction in CID with water stress was greatest at tillering, and the effect was less pronounced at flowering and at maturity. At each harvest, the effect was most pronounced in newly developed plant parts. Root and grain tended to have the lowest CID values, and stem the highest, at all harvest times. A negative relationship was observed between CID measured at tillering and WUEA (and WUET) measured over the period from seedling to tillering, whereas a reverse relationship was obtained between CID measured at flowering and WUEA (and WUET) measured over the period from tillering to flowering, and an unclear relationship between CID measured at maturity and WUEA (and WUET) measured over the period from flowering to maturity. The ratio of the intercellular and atmospheric concentration of CO2 (Ci/Ca) were closely associated with CID throughout the water regimes when one cultivar was considered, however, cultivar differences in CID were not related to variations in Ci/Ca. The results indicate that significant cultivar difference existed in CID in all the analyzed plant parts at all harvest times, while corresponding difference in WUEA (and WUET) between the cultivars was not necessarily consistent. Abbreviations: WUE – water-use efficiency; WUEi – instantaneous WUE (or leaf transpiration efficiency); ADM – above-ground dry matter; TDM – total dry matter; WUEA– ADM-based WUE; WUET– TDM-based WUE} CID – carbon isotope discrimination; NL – the newest leaves; FEL – recently fully expanded leaves; FL – flag leaves; P – photosynthesis rate; g – leaf stomatal conductance to water vapor; Ci– intercellular CO2 concentration; Ca– atmospheric CO2 concentration; T – transpiration rate; gs – total conductance of CO2  相似文献   

19.
Effects of salinity and nutrients on carbon gain in relation to water use were studied in the grey mangrove, Avicennia marina, growing along a natural salinity gradient in south‐eastern Australia. Tall trees characterized areas of seawater salinities (fringe zone) and stunted trees dominated landward hypersaline areas (scrub zone). Trees were fertilized with nitrogen (+N) or phosphorus (+P) or unfertilized. There was no significant effect of +P on shoot growth, whereas +N enhanced canopy development, particularly in scrub trees. Scrub trees maintained greater CO2 assimilation per unit water transpired (water‐use efficiency, WUE) and had lower nitrogen‐use efficiency (NUE; CO2 assimilation rate per unit leaf nitrogen) than fringe trees. The CO2 assimilation rates of +N trees were similar to those in other treatments, but were achieved at lower transpiration rates, stomatal conductance and intercellular CO2 concentrations. Maintaining comparable assimilation rates at lower stomatal conductance requires greater ribulose 1·5‐bisphosphate carboxylase/oxygenase activity, consistent with greater N content per unit leaf area in +N trees. Hence, +N enhanced WUE at the expense of NUE. Instantaneous WUE estimates were supported by less negative foliar δ13C values for +N trees and scrub control trees. Thus, nutrient enrichment may alter the structure and function of mangrove forests along salinity gradients.  相似文献   

20.
Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号