首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

It has been increasingly recognized that only distal lower order roots turn over actively within the <2 mm fine root system of trees. This study aimed to estimate fine root production and turnover rate based on lower order fine roots and their relations to soil variables in mangroves.

Methods

We conducted sequential coring in five natural mangrove forests at Dongzhai Bay, China. Annual fine root production and turnover rate were calculated based on the seasonal variations of the biomass and necromass of lower order roots or the whole fine root system.

Results

Annual fine root production and turnover rate ranged between 571 and 2838 g m?2 and 1.46–5.96 yr?1, respectively, estimated with lower order roots, and they were increased by 0–30 % and reduced by 13–48 %, respectively, estimated with the whole fine root system. Annual fine root production was 1–3.5 times higher than aboveground litter production and was positively related to soil carbon, nitrogen and phosphorus concentrations. Fine root turnover rate was negatively related to soil salinity.

Conclusions

Mangrove fine root turnover plays a more important role than aboveground litter production in soil C accumulation. Sites with higher soil nutrients and lower salinity favor fine root production and turnover, and thus favor soil C accumulation.
  相似文献   

2.

Background and aims

We examined changes in soil organic matter arising from conversion of a 45-year old pasture to a 10 yr. old native tree plantation in Panamá, to evaluate the effect of monoculture and mixtures.

Methods

We intensively sampled the soil 0–10 cm depth in the pasture in 2001 and in 22 plantation plots in 2011, ranging from 5 monocultures to 3- and 6-species treatments; samples were also taken from an undisturbed forest site. Soil analyses included organic carbon (SOC) and δ13C.

Results

Conversion of the pasture to tree plantation resulted in an overall loss of SOC of 0.6 kg m?2 (18%) in the top 10 cm, but neither tree species nor diversity had a significant effect. End-member δ13C values suggested that the contribution of C3 plants to SOC was increased from 26% in the pasture to 55% after 10 years of plantation and SOC turnover times were calculated to be 21–36 yr.

Conclusions

The magnitude of the loss in soil SOC is smaller than the increases in tree biomass (~3 kg C m?2) and litter (~0.3 kg C m?2) in the plantation, but still a significant part of the ecosystem C balance.
  相似文献   

3.

Aims

Trifolium subterraneum L. is the predominant annual pasture legume in southern Australia. Cultivars with improved phosphorus (P) foraging ability would improve the P-use efficiency of agricultural systems. We therefore investigated variation in root traits related to P-uptake among six cultivars.

Methods

Micro-swards were grown at six levels of P in field soil with indigenous arbuscular mycorrhizal (AM) fungi for six weeks. Dry matter yield, tissue P concentration, rhizosphere carboxylates, AM fungal colonisation and root morphological traits were measured.

Results

The cultivars showed similar shoot and root yield responses to P supply. Average root diameter did not change, specific root length (SRL) increased and root tissue density (RTD) decreased with increased P supply. Amounts of total rhizosphere carboxylates were low (<1.2 nmol cm?1 root). The percentage of root length colonised by AM fungi was greatest (29–43 %) at an intermediate level (8 mg kg?1 dry soil) of P supply.

Conclusions

Most differences among cultivars were reasonably consistent across P supply levels, indicating greater numbers of lines could be screened reliably at a single P level. Low colonisation by AM fungi at low P supply deserves consideration when selecting soils for cultivar comparisons. Increased SRL and decreased RTD at high P supply likely result from self-shading within the micro-swards and warrant further investigation.
  相似文献   

4.

Background and Aims

Rock fragments within topsoil have important effects on soil properties and plant growth. This study mainly aimed to investigate the relationships between rock fragments, soil carbon (C) and nitrogen (N) densities and vegetation biomass in an alpine steppe.

Methods

Rock fragments, plant and soil samples were collected from four topographic positions (top, upper, lower, and bottom) on a hillslope.

Results

Volumetric rock fragment content within the 0–30 cm soil profile varied from 17.8 to 30.5%, the upper position value was significantly greater (P < 0.05) than those at other positions. The highest aboveground biomass was observed at the lower position (921 kg ha?1), while the highest belowground biomass within the 0–30 cm profile was found at the upper position (4460 kg ha?1). More fine earth and plant litter input accompanied by lower C and N losses induced by rainfall erosion resulted in higher soil organic C and total N densities (28.6 Mg C ha?1 and 2.87 Mg N ha?1) at the lower position.

Conclusions

Rock fragments may promote root growth but limit aboveground biomass production, and can therefore change the biomass distribution pattern. Our findings provide more evidence for scientifically assessing alpine steppe productivity.
  相似文献   

5.

Background and aims

Single superphosphate (SSP) is a major source of phosphorus (P) used in grazing systems to improve pasture production. The aim of this experiment was to determine the fate of fertiliser P in clover pastures under field conditions.

Methods

A procedure was developed to radiolabel SSP granules with a 33P radiotracer, which was then applied to the soil surface (equivalent to ~12 kg P ha?1) of a clover pasture. Recovery of fertiliser P was determined in clover shoots, fertiliser granules and soil fractions (surface layer: 0–4 cm and sub-surface layer: 4–8 cm).

Results

The P diffusion patterns of the 33P-labelled SSP granules were not significantly different to those of commercial SSP granules (P?>?0.05). Recovery of fertiliser P in clover shoots was 30–35 %. A considerable proportion of the fertiliser P (~28 %) was recovered in the surface soil layer and was largely inorganic P.

Conclusions

Recovery of fertiliser P by clover plants was up to 35 % in the year of application. Much of the fertiliser P in soil fractions was inorganic P, which highlights the importance of inorganic P forms and dynamics in soils under clover pasture on a single season timeframe at these sites.
  相似文献   

6.

Background and aims

Measures of phosphorus (P) in roots recovered from soil underestimate total P accumulation below-ground by crop species since they do not account for P in unrecovered (e.g., fine) root materials. 33P-labelling of plant root systems may allow more accurate estimation of below-ground P input by plants.

Methods

Using a stem wick-feeding technique 33P-labelled phosphoric acid was fed in situ to canola (Brassica napus) and lupin (Lupinus angustifolius) grown in sand or loam soils in sealed pots.

Results

Recovery of 33P was 93 % in the plant-soil system and 7 % was sorbed to the wick. Significantly more 33P was allocated below-ground than to shoots for both species with 59–90 % of 33P measured in recovered roots plus bulk and rhizosphere soil. 33P in recovered roots was higher in canola than lupin regardless of soil type. The proportion of 33P detected in soil was greater for lupin than canola grown in sand and loam (37 and 73 % lupin, 20 and 23 % canola, respectively). Estimated total below-ground P accumulation by both species was at least twice that of recovered root P and was a greater proportion of total plant P for lupin than canola.

Conclusion

Labelling roots using 33P via stem feeding can empower quantitative estimates of total below-ground plant P and root dry matter accumulation which can improve our understanding of P distribution in soil-plant systems.
  相似文献   

7.

Background and aims

A study was performed to investigate the role of fungal metabolites released into the rhizosphere of replanted orchards as a potential biotic component of tree growth decline.

Methods

The phytotoxicity of the gamma ray-sterilized crude culture filtrates of sixteen fungal species originating from replanted apple orchards was tested in a bioassay. Low molecular weight compounds released by Fusarium spp. were analyzed.

Results

The fungal culture filtrates affected seedling growth and health with an activity that varied from growth inhibition to promotion. Three out of the six species of Fusarium tested produced species-specific mycotoxins such as equisetin and enniatin B and D (<1 μg ml?1 and <6 μg ml?1, respectively) associated with root-tip necrosis, whereas fusaric acid (80–230 μg ml?1) was associated with asymptomatic plant growth inhibition. These findings were consistent with those obtained using pure compounds. Moreover, methoxyconidiol, paecilaminol, integrastatin B and other biologically active compounds, whose fungal origin and phytotoxicity have not yet been reported, were found. in all fungal filtrates.

Conclusions

Findings suggest that i) phytopathogenicity of soil borne fungi can be expressed regardless of root infection; ii) a synergistic interaction between co-occurring mycotoxins and other biologically active compounds may explain plant growth inhibition. Iii) fungal metabolites released into soil may represent an underestimated component of nonspecific replant disease.
  相似文献   

8.

Aims

Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation.

Methods

Soil CO2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration).

Results

Total soil CO2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha?1 yr.?1). The undisturbed forest served as atmospheric C sink (2.1 t C ha?1 yr.?1), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (?5.5 t C ha?1 yr.?1) was almost twice as high as six years after disturbance (?2.9 t C ha?1 yr.?1), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss.

Conclusions

C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.
  相似文献   

9.

Background and aims

Arbuscular mycorrhizal (AM) hyphae represent an important route for input of plant-derived C to soil, but impacts of these inputs on microbial communities and processes are poorly understood. In this study we characterised pathways of C-flow through microbial communities associated with AM hyphae and quantified impacts on mineralisation of native SOM.

Methods

Continuous, steady-state 13CO2 labelling was applied throughout the growth period (60 d) of Lolium perenne. Exclusion meshes were used to control access of roots and AM hyphae to soil, and plant-derived C was quantified within microbial PLFA and NLFA, and soil CO2 efflux was partitioned into plant- and soil organic matter (SOM) derived components.

Results

Pathways of C-flow through hyphosphere and mycorrhizosphere communities were distinct, as was the fate of plant-derived C from AM hyphae accessing soil through 37 and 1 μm meshes. Mineralisation of native SOM was increased in all treatments, relative to unplanted controls, and this priming effect was largest for AM hyphae accessing soil through the 1 μm mesh size.

Conclusions

We demonstrated that AM hyphae can strongly increase mineralisation of native SOM and identified distinct pathways of C-flow through hyphosphere communities. Our results suggest that, in addition to affecting rates of litter decomposition, AM hyphae may have a significant influence on turnover of native SOM.
  相似文献   

10.

Aims

The objective of this study was to investigate the effects of the precipitation changes on soil, microbial and root respirations of switchgrass soils, and the relationships between soil respiration and plant growth, soil moisture and temperature.

Methods

A mesocosm experiment was conducted with five precipitation treatments over two years in a greenhouse in Nashville, Tennessee. The treatments included ambient precipitation, ?50%, ?33%, +33% and +50% of ambient precipitation. Soil, microbial, and root respirations were quantified during the growing seasons.

Results

Mean soil and root respirations in the +50% treatment were the highest (2.48 and 0.93 μmol CO2 m?2 s?1, respectively) among all treatments. Soil microbial respiration contributed more to soil respiration, and had higher precipitation sensitivity mostly than root respiration. Increases in precipitation mostly enhanced microbial respiration while decreases in precipitation reduced both microbial and root respirations. Across precipitation treatments, soil respiration was significantly influenced by soil moisture, soil temperature, and aboveground biomass.

Conclusions

Our results showed that microbial respiration was more sensitive to precipitation changes, and precipitation regulated the response of soil respiration to soil temperature. The information generated in this study will be useful for model simulation of soil respiration in switchgrass fields under precipitation changes.
  相似文献   

11.

Aims

We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM).

Methods

We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm?3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference).

Results

Good recoveries of soil mass (96%), OC and TN (both ~ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P.

Conclusions

The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.
  相似文献   

12.

Aims

Fine root morphological traits are generally changed under soil nitrogen (N) enrichment, however, the underlying mechanism and functional significance are still not well understood. Our aims were to investigate the linkage of root morphology to anatomy, and its implication for root function at elevated soil N availability.

Methods

Ingrowth cores were used to sample root tips (0–20 cm soil depth) from six temperate tree species growing in monoculture plantations at a common site in northeastern China. Root morphological and anatomical traits were concurrently measured, and their relationships were determined within and among species in both control and N fertilization (10 g N m?2y?1) plots.

Results

Root diameter generally increased in all six species (non-significant for Phellodendron amurense) following N fertilization, which was caused by the increased root stele radius rather than cortical thickness. Congruently, N fertilization significantly decreased the ratio of cortical thickness to stele radius, but increased the ratio of total cross-sectional area of conduits to stele area in root tips across all species.

Conclusions

The observed anatomical changes of root tips contributed to the alternations of morphological root traits following N fertilization, with potentially important impacts on root physiological functions, like increased water and nutrient transport.
  相似文献   

13.

Background and aims

Relevant soil properties and nutrient distributions influencing crop root growth might be different under no-till (NT) and mouldboard plough (MP) management. The possible different root systems within different managements might have key impact on crop nutrient uptake and consequently crop production. Our objective was to assess the long-term combined effects of tillage and phosphorus (P) fertilization on corn (Zea mays L.) root distribution and morphology.

Methods

Corn root and soil samples were collected during the silking stage at five depths (0–5, 5–10, 10–20, 20–30 and 30–40 cm) and three horizontal distances perpendicular to the corn row (5, 15 and 25 cm) under MP and NT with three P fertilizations (0, 17.5, and 35 kg P ha?1) for a long-term (22 years) experiment in eastern Canada. Root morphology and soil properties were determined.

Results

NT practice decreased corn root biomass by ?26 % compared to MP, mainly by decreasing the primary and secondary roots. Additionally, corn roots in NT tend to be more expansive on the surface layer with higher root length and surface densities for the depth of 0–5 cm at two sampling distances of 15 and 25 cm. The 35 kg P ha?1 rate increased the root biomass by 26 and 41 % compared to the 0 and 17.5 kg P ha?1 rates.

Conclusions

No-tillage practice and low rates of P fertilization reduce corn roots. This is probably caused by the weed competition in NT and the continued downward P status with low P rates over 22 years.
  相似文献   

14.

Aims

The role of different soil types for beech productivity and drought sensitivity is unknown. The aim of this experimental study was to compare mycorrhizal diversity between acid sandy and calcareous soils and to investigate how this diversity affects tree performance, nitrogen uptake and use efficiency (NUE).

Methods

Beech trees were germinated and grown in five different soil types (pH 3.8 to 6.7). One-and-a-half-year-old plants were exposed for 6 weeks to sufficient or low soil humidity. Tree biomass, root tip mycorrhizal colonization and community structure, root tip mortality, leaf area, photosynthesis, nitrogen concentrations, NUE and short-term 15N uptake from glutamine were determined.

Results

Soil type did not affect photosynthesis or biomass formation, with one exception in calcareous soil, where root mortality was higher than in the other soil types. Beech in acid soils showed lower mycorrhizal colonization, higher nitrogen tissue concentrations, and lower NUE than those in calcareous soils. Drought had no effect on nitrogen concentrations or NUE but caused reductions in mycorrhizal colonization. Mycorrhizal species richness correlated with nitrogen uptake and NUE. Nitrogen uptake was more sensitive to drought in calcareous soils than in acid soils.

Conclusions

Beech may be more drought-susceptible on calcareous sites because of stronger decrease of organic nitrogen uptake than on acid soils.
  相似文献   

15.

Aims

The objectives of this study were to evaluate (1) the fertilizer potential of bone char, (2) the effects of wood biochar on plant-available phosphorus (P), and (3) the role of root-mycorrhizae-biochar interactions in plant P acquisition from a P-fixing soil.

Methods

Incubation and pot experiments were conducted with a P-fixing soil and maize with or without root hairs and arbuscular mycorrhizae (AM) inoculation. Olsen-, resin-P and plant P accumulation were used to estimate P availability from bone char, co-pyrolyzed bone char-wood biochar, and separate bone char and wood biochar additions produced at 60, 350 and 750 °C, and Triple Superphosphate (TSP).

Results

Maize inoculated with AM showed similar P accumulation when fertilized with either 750 °C bone char or TSP. Pyrolyzing bone did not increase extractable P in soil in comparison to unpyrolyzed bone, apart from a 67 % increase in resin-extractable P after additions of bone char pyrolyzed at 350 °C. Despite greater Olsen-P extractability, co-pyrolysis of bone with wood reduced maize P uptake. Wood biochars reduced resin-P from bone char by 14–26 %, whereas oven-dried wood increased resin-P by 23 %.

Conclusions

Bone char is an effective P fertilizer, especially if root-AM interactions are simultaneously considered. Biochar influences plant access to soil P and requires careful management to improve P availability.
  相似文献   

16.

Background and aims

In Malawi, strategies are being sought to boost maize production through improvements in soil fertility. This study assessed the impact of intercropping maize (Zea mays) with pigeon pea (Cajanus cajan) in Lixisols of Malawi on yield, biological N fixation, soil aggregation, and P forms within soil aggregates.

Methods

Maize and pigeon pea were grown intercropped in pots, with varying degrees of root interaction in order to understand the relative importance of biochemical versus physical rhizospheric interactions. Following harvest, soils were separated into aggregate fractions using wet-sieving, and the nutrient content of all fractions was assessed.

Results

The proportion of macroaggregates and microaggregates increased by 52 and 111%, respectively, in the intercropping treatment compared to sole maize, which significantly increased organic P storage in the microaggregates of intercropped compared to sole maize (84 versus 29 mg P kg?1, respectively). Biologically fixed N increased from 89% in the sole pigeon pea to 96% in the intercropped system.

Conclusions

Intercropping maize with pigeon pea can have a significant and positive impact on soil structure as well as nutrient storage in these high P-sorbing soils. This is caused primarily by physical root contact and to a lesser degree by biochemical activities.
  相似文献   

17.

Aims

The purpose of this study is to evaluate root and stem growth, nutrient status and soil properties of a tree planting in structural soil.

Methods

Root and stem growth were measured at an 10-year-old urban planting of Tilia x europaea L. ‘Pallida’ established in structural soil on a paved square in Copenhagen, Denmark.Root abundance was quantified and soil profiles were established at three different distances from 10 trees (1.0, 1.9, and 2.9 m). Soil and leaf samples were analysed for nutrient concentrations.

Results

Abundant root presence was measured across the entire profile of structural soil (160?×?60 cm) at all distances, provided that structural soil layers were constructed correctly. Erroneously constructed structural soil layers however, resulted in impaired tree and root growth. Coarse root morphology was affected by the confined growing space in the voids of the stone matrix. The soil was relatively alkaline with an average pH (CaCl2) of 7.3. Foliar analysis revealed deficiencies of K and Mn. These deficiencies might be due to a combined effect of high pH and low soil concentrations of these nutrients.

Conclusions

The study documents that correctly constructed structural soils allow and encourage root growth in load bearing layers.
  相似文献   

18.

Background and aims

Myxodiaspores have been shown to enhance soil-seed contact and improve soil stability. We aim to demonstrate the effect of myxodiaspory on the stability of soil aggregates and gain insight on the nature of bonds.

Methods

Mucilage extracted from chia (Salvia hispanica L.) fruits after hydration was mixed with three soils (sandy-loam, loam, clay loam), incubated and tested at different times up to 30 days. We measured aggerate stability by wet sieving and the dynamics of soil CO2 evolution. SEM imaging and 13CPMAS spectroscopy of mucilage were performed in order to infer mechanisms of soil stabilization.

Results

The incorporation of mucilage resulted in a dose- and soil-dependent rise in aggregate stability. The dose of 2% mucilage overcame textural effects on soil aggregate stability by providing a 2.3-fold stability increase in the loam and clay-loam and a 4.9-fold increase in the sandy-loam compared to control. The effect persisted after 30 days in spite of C losses due to soil respiration. Mechanisms of soil bonding analogous to xanthan can be inferred from SEM imaging and 13C–CPMAS, since the mucilage was identified as a biopolymer containing 93.39% carbohydrates and 22.02% uronic acids.

Conclusions

We demonstrate that mucilage extruded by hydrated diaspores strongly increases soil aggregate stability. This represents a potentially important ecosystem service provided by myxodiasporous crops during germination. Our findings confirm potential applications of mucilage from myxodiaspores as natural soil stabilizers.
  相似文献   

19.

Background and aims

Aggregate formation and stability of soil organic carbon (SOC) differ in different farming systems, probably due to differences in effects of tillage and residue management. This study used a 24-year field experiment to compare the effects of continuous maize cropping and natural fallow on aggregate formation and SOC storage in various aggregate-size classes and density fractions of a Chinese Mollisol.

Methods

Soils collected from the upper 0.2-m layer were wet-sieved into four aggregate-size classes (>2, 0.25–2, 0.053–0.25 and <0.053 mm) which were then fractionated into light, occluded and mineral C fractions. The concentrations of SOC and natural 13C abundance of each fraction in bulk soil and the aggregate classes were determined.

Results

Continuous maize cropping decreased the proportion of macro-aggregates (>0.25 mm) and increased that of micro-aggregates (<0.25 mm) compared to the initial value while the opposite was observed in the natural fallow system. The fallow system generally had greater SOC concentration in the occluded fraction, higher proportion of newly-derived C as % total SOC in the light fraction and greater contribution of total residue C to new C in macro-aggregates and light fractions compared to the continuous maize system. Furthermore, the fallow system resulted in shorter turnover time of SOC than the continuous maize system.

Conclusions

Natural fallow associated with autumn-plough improved soil structural stability and SOC storage while continuous maize cropping with residue removal decreased SOC sequestration and soil aggregate stability.
  相似文献   

20.

Background and Aims

The effects of Sb(V), alone or combined with Se, on the growth and root development of plants are unknown. The aim of this study is to investigate the interaction between selenite and different forms of Sb and the effects on their uptake in rice and on rice root morphology.

Methods

A hydroponic experiment was conducted that contained fourteen treatments. The treatment levels for Se were 0.5 and 1 mg L?1, and the treatment levels for Sb(III) and Sb(V) were 5 and 15 mg L?1.

Results

Sb(V) alone significantly reduced the surface area, mean diameter and volume of the roots, whereas Sb(III) alone reduced the values of most parameters of root morphology. The addition of 1 mg L?1 Se significantly enhanced the surface area, number of medium roots, and Sb concentration in the roots subjected to 15 mg L?1 Sb(V), but it decreased the number of root forks, the number and proportion of fine roots, and the shoot Sb concentration under exposure to 15 mg L?1 Sb(III). When the plants were subjected to 1 mg L?1 Se, the addition of 15 mg L?1 Sb(III) markedly reduced the shoot and root Se concentrations and the number of root tips, root forks, and fine roots and increased the mean root diameter. However, the addition of Sb(V) did not significantly affect the root and shoot Se concentrations but significantly decreased the number of root forks and fine roots and increased the proportion of medium roots.

Conclusions

Se and Sb(III) showed antagonistic effects on uptake in the shoots, but not in the roots, of paddy rice. A range of Se concentrations could stimulate the uptake of Sb in both the shoots and roots of paddy rice exposed to Sb(V).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号