首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nematicidal activity of essential oils: a review   总被引:1,自引:0,他引:1  
Plant parasitic nematodes are the most destructive group of plant pathogens worldwide and their control is extremely challenging. Plant Essential oils (EOs) and their constituents have a great potential in nematode control since they can be developed for use as nematicides themselves or can serve as model compounds for the development of derivatives with enhanced activity. This study reviews the plant EOs evaluated as potential nematicides and their toxic effects against pinewood nematode (Bursaphelenchus xylophilus) and root-knot nematodes (Meloidogyne spp.). Additionally, the nematicidal activity to M. javanica of several EOs from Spanish aromatic plants and their components is described.  相似文献   

2.
Allelopathy in the Management of Plant-Parasitic Nematodes   总被引:1,自引:0,他引:1  
There are numerous reports of nematicidal chemicals in crude plant homogenates, leachates, and decomposing residues. These compounds are usually assumed to be secondary metabolites, which serve as chemical defenses against disease and parasites. When such compounds are released into the rhizosphere, they are known as allelochemicals. The possibility exists to exploit allelochemicals for nematode control, and there have been many attempts to use this approach either by rotation, intercropping, or green manure treatments. Results have met with mixed success. Proof of allelochemical activity in field situations is difficult to obtain, but it is evident that some rotation crops are significantly better at reducing nematode populations than others. Rotations with non-host plants may simply deny the nematode population an adequate food source for reproduction (passive suppression), whereas allelopathic crops kill nematodes by the production of toxic compounds (active suppression). Progress toward sustainable agriculture should benefit from studies on allelopathic nematode control. However, grower acceptance of new plant-rotation strategies are based on economic and logistical considerations as well as efficacy. A potential practical application of allelopathic nematode control that involves using rapeseed as a green manure crop to reduce populations of Xiphinema americanum sensu lato in temperate orchards is presented.  相似文献   

3.
AIMS: The aim of this study was to investigate the role of proteases in Bacillus spp. of rhizobacteria in suppressing nematode populations and to understand their mechanism of action. METHODS AND RESULTS: Rhizobacteria with nematicidal activity were isolated from soil samples of five root knot nematode-infested farms. Among these strains, nematotoxicities of Bacillus strains were intensively analysed. Further assays of nematicidal toxins from Bacillus sp. strain RH219 indicated an extracellular cuticle-degrading protease Apr219 was an important pathogenic factor. The Apr219 shared high similarity with previously reported cuticle-degrading proteases from Brevibacillus laterosporus strain G4 and Bacillus sp. B16 (Bacillus nematocida). The cuticle-degrading protease genes were also amplified from four other nematicidal Bacillus strains isolated from the rhizosphere. In addition to Apr219, a neutral protease Npr219 from Bacillus sp. RH219 was also investigated for activity against nematodes. CONCLUSIONS: The wide distribution of cuticle-degrading proteases in Bacillus strains with nematicidal activity suggested that these enzymes likely play an important role in bacteria-nematode-plant-environment interactions and that they may serve as important nematicidal factors in balancing nematode populations in the soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Increased understanding of the mechanism of action of Bacillus spp. against nematodes could potentially enhance the value of these species as effective nematicidal agents and develop new biological control strategies.  相似文献   

4.
Abstract

In Iran, potato cyst nematode (Globodera rostochiensis) jeopardizes the traditionally high yields of potatoes in Hamadan Province in the west of Iran. Biofumigation is an eco-friendly method for integrated management of plant parasitic nematodes. In the laboratory, water extracts of water cress, fenugreek and dill similarly reduced viability of second stage juveniles after 3?h of exposure, and decreased hatching of encysted eggs to less than 1%. Pre-treatment and combined tests similarly decreased hatch. The nematicidal efficiency of top green manure of Lepidium sativum on the survival of nematode was tested on a susceptible cv in microplots. The weights of biofumigated plants increased. Anti-hatching properties of water cress applied as a biofumigant reduced hatch by average of 56%. Reproduction rates were lowered to below one, and final populations of cysts and their egg contents were reduced by nearly 60% in treated soil. Biofumigation at a 1% amendment rate was sufficient to bring about these results, which were comparable with those achieved with 2 and 3% rates. Nematicidal isothiocyanates released after incorporating glucosinolate-containing brassica plants are fully biodegradable and less toxic than their synthetic equivalents, and their use is considered a safer alternative to soil fumigants such as methyl bromide.  相似文献   

5.
Insunza  V.  Alström  S.  Eriksson  K. B. 《Plant and Soil》2002,241(2):271-278
Trichodorid nematodes (Nematoda: Trichodoridae) are vectors of tobacco rattle virus (TRV), one of the causal agents of spraing disease in potato. Root bacteria from nematicidal plants and their control potential against Trichodoridae were the focus of this study. Bacteria isolated from the roots of 12 nematicidal plants and potato were characterized for their production of hydrolytic enzymes, hydrogen cyanide, phenol oxidation ability and antifungal activity towards the potato pathogen Rhizoctonia solani. Based on these functional traits, bacteria isolates were selected and tested in greenhouse conditions on potato (cv. Saturna) for their effect on plant growth, and screened for nematicidal activity against Paratrichodorus pachydermus and Trichodorus primitivus in naturally infested soil. Sixteen bacteria isolates out of 44 reduced nematode densities by 50–100%. Nine selected isolated were further tested by bacterizing potato tubers (cv. King Edward) which were planted in a trichodorid and TRV-infested soil. Four bacterial isolates consistently reduced nematode densities (by 56.7–74.4%) with no visual negative effect on plant growth. These isolates were tentatively identified, partly by fatty acid methyl ester (FAME) analysis as: Stenotrophomonas maltophilia, Bacillus mycoides, Pseudomonas sp., and one unidentified bacterium. The isolates originated from potato, Plantago major, Thymus vulgaris and Asparagus officinalis, respectively. Two Pseudomonas isolates obtained from Zinnia elegans and selected for their strong nematicidal activity in soil screening tests, did not reduce the nematode population when tested on potato. It is concluded that plants releasing nematicidal compounds may harbour nematode-antagonistic bacteria as well.  相似文献   

6.
7.
Due to climate warming, many plant species shift ranges towards higher latitudes. Plants can disperse faster than most soil biota, however, little is known about how range‐expanding plants in the new range will establish interactions with the resident soil food web. In this paper we examine how the soil nematode community from the new range responds to range‐expanding plant species compared to related natives. We focused on nematodes, because they are important components in various trophic levels of the soil food web, some feeding on plant roots, others on microbes or on invertebrates. We expected that range expanding plant species have fewer root‐feeding nematodes, as predicted by enemy release hypothesis. We therefore expected that range expanders affect the taxonomic and functional composition of the nematode community, but that these effects would diminish with increasing trophic position of nematodes in the soil food web. We exposed six range expanders (including three intercontinental exotics) and nine related native plant species to soil from the invaded range and show that range expanders on average had fewer root‐feeding nematodes per unit root biomass than related natives. The range expanders showed resistance against rather than tolerance for root‐feeding nematodes from the new range. On the other hand, the overall taxonomic and functional nematode community composition was influenced by plant species rather than by plant origin. The plant identity effects declined with trophic position of nematodes in the soil food web, as plant feeders were influenced more than other feeding guilds. We conclude that range‐expanding plant species can have fewer root‐feeding nematodes per unit root biomass than related natives, but that the taxonomic and functional nematode community composition is determined more by plant identity than by plant origin. Plant species identity effects decreased with trophic position of nematodes in the soil food web.  相似文献   

8.
Nematicidal prenylated flavanones from Phyllanthus niruri   总被引:1,自引:0,他引:1  
Two prenylated flavanones have been isolated from the hexane extract of Phyllanthus niruri plant. The structure of these flavanones were established as 8-(3-Methyl-but-2-enyl)-2-phenyl chroman-4-one (1) and 2-(4-hydroxyphenyl)-8-(3-methyl-but-2-enyl)-chroman-4-one (2) on the basis of spectral analysis. These were evaluated for nematicidal activity against root-knot, Meloidogyne incognita, and reniform, Rotylenchulus reniformis, nematodes. Compound 2 exhibited nematicidal activity at par with the standard carbofuran (LC50 3.3 and 3.1ppm, respectively) when tested against reniform nematode. The LC50 value against root-knot nematode was found to be 14.5ppm. Compound 1 however, showed moderate activity against both the test nematodes.  相似文献   

9.
A partially purified preparation as well as two formulations of exotoxin from Bacillus thuringiensis (thuringiensin) were evaluated for nematicidal activity. The methods used in our evaluations included direct contact nematicidal assays, hatching tests, infection tests in seed pouches using the cucumber/root-knot nematode (Meloidogyne incognita) system, and greenhouse test using the root-knot nematode. While contact nematicidal activity was not observed against juveniles of M. incognita, 100% mortality occurred when the free-living nematode, Caenorhabditis elegans, was used as the test organism. Nematode infection evaluations in the seed pouch assay showed reduced root galling at relatively high concentrations (>10 mg kg-1). Greenhouse assays indicated significant reduction in the soil population. However, the degree of control in relation to the amount of material applied, as measured by the gall numbers, larvae from soil/roots, and plant growth parameters, was not considered adequate. Data on the plant response in relation to treatment with different formulations of the toxin are presented.  相似文献   

10.
Xia  Yanfei  Li  Shen  Liu  Xueting  Zhang  Chong  Xu  Jianqiang  Chen  Yingwu 《Annals of microbiology》2019,69(12):1227-1233
Purpose

Determination of the nematicidal potential and mode of action of bacteria isolated from tobacco rhizosphere soil against the root-knot nematode Meloidogyne javanica in tomato plants.

Methods

Antagonistic bacteria were isolated from rhizosphere soil of tobacco infested with root-knot nematodes. Culture filtrate was used to examine nematicidal activity and ovicidal action of bacterial strains. Biocontrol of M. javanica and growth of treated tomato plants were assessed in pot experiments. To clarify whether secondary metabolites of bacteria in tomato roots induced systemic resistance to M. javanica, bacterial culture supernatants and second-stage juvenile nematodes were applied to spatially separated tomato roots using a split-root system. Bacterial strains were identified by 16S rDNA and gyrB gene sequencing and phylogenetic analysis.

Results

Of the 15 bacterial strains isolated, four (LYSX1, LYSX2, LYSX3, and LYSX4) demonstrated nematicidal activity against second-stage juveniles of M. javanica, and strain LYSX1 showed the greatest antagonistic activity; there was dose-dependent variability in nematicidal activity and inhibition of egg mass hatching by strain LYSX1. In vivo application of LYSX1 to tomato seedlings decreased the number of egg masses and galls and increased the root and shoot fresh weight. Treatment of half of the split-root system with LYSX1 reduced nematode penetration to the other half by 41.64%. Strain LYSX1 was identified as Bacillus halotolerans.

Conclusion

Bacillus halotolerans LYSX1 is a potential microbe for the sustainable biocontrol of root-knot nematodes through induced systemic resistance in tomato.

  相似文献   

11.
松材线虫生防细菌的筛选、鉴定及其毒性因子的初步研究   总被引:4,自引:0,他引:4  
从河南南阳不同农田的植物根部采取土壤样本,共分离获得了198株细菌。通过毒性测试和平板生测从中筛选出松材线虫生防细菌6株,其中NS-3菌株对松材线虫的杀灭活性最高。结合该菌株的形态学、生理学特征及16S rDNA序列分析等结果将该菌株归为芽孢杆菌属,命名为Bacillus sp.strain NS-3。将该细菌液体培养的上清液和上清蛋白粗提物分别处理松材线虫48h后线虫的死亡率分别达到50%和100%;线虫死亡后虫体消解。然而,细菌的上清蛋白粗提物经煮沸变性后,基本丧失了对松材线虫的侵染活性,结果显示细菌Bacillus sp.strain NS-3的杀线虫活性物质主要要存在于细菌培养上清液中,并且为热不稳定性物质。  相似文献   

12.
Organic amendments have been widely used for management of plant-parasitic nematodes. Relatively rapid declines in nematode population levels may occur when decomposing materials release toxic compounds, while longer-term effects might include increases in nematode antagonists. Improved crop nutrition and plant growth following amendment use may lead to tolerance of plant-parasitic nematodes. Results depend on a great variety of factors such as material used, processing/composting of material, application rate, test arena, crop rotation and agronomic practices, soil type, climate, and other environmental factors. Reasons for variable performance and interpretation of results from amendment studies are discussed. Case studies of amendments for nematode management are reviewed from Florida, where composts and crop residues are the most frequently used amendments. Plant growth was often improved by amendment application, free-living nematodes (especially bacterivores) were often stimulated, but suppression of plant-parasitic nematodes was inconsistent. Amendments were generally not as effective as soil fumigation with methyl bromide for managing root-knot nematodes (Meloidogyne spp.), and often population levels or galling of root-knot nematodes in amended plots did not differ from those in non-amended control plots. While amendments may improve plant growth and stimulate soil food webs, additional study and testing are needed before they could be used reliably for management of plant-parasitic nematodes under Florida conditions.  相似文献   

13.
Thiarubrine C, a polyacetylenic 1,2-dithiin isolated from the roots of Rudbeckia hirta (Asteraceae), exhibited strong nematicidal activity in in vitro and growth chamber assays. Thiarubrine C was toxic, in the absence of light, to the plant-parasitic nematodes Meloidogyne incognita and Pratylenchus penetrans at LC₅₀s of 12.4 ppm and 23.5 ppm, respectively. A minimum exposure time between 12 and 24 hours was the critical period for nematode mortality due to thiarubrine C. Although thiarubrine C was not totally dependent on light for toxicity, activity was enhanced in the presence of light, especially with the microbivorous nematode, Teratorhabditis dentifera. Upon exposure of M. incognita juveniles to 20 ppm thiarubrine C for 1 hour, infection of tomato plants was greatly reduced compared to untreated checks. Thiarubrine C was also effective in reducing plant infection when mixed with soil 24 hours prior to or at planting, unlike other related compounds such as δ-terthienyl.  相似文献   

14.
Commercial plant essential oils from 26 plant species were tested for their nematicidal activities against the pinewood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba). Analysis by gas chromatography-mass spectrometry led to identification of 12, 6 and 16 major compounds from ajowan, allspice and litsea oils, respectively. These compounds from three plant essential oils were tested individually for their nematicidal activities against the pinewood nematode. LC50 values of geranial, isoeugenol, methyl isoeugenol, eugenol, methyl eugenol and neral against pine wood nematodes were 0.120, 0.200, 0.210, 0.480, 0.517 and 0.525 mg/ml, respectively. The essential oils described herein merit further study as potential nematicides against the pinewood nematode.  相似文献   

15.
Plant parasitic nematodes have developed the capacity to sense and respond to chemical signals of host origin and the ability to orientate towards plant roots enhances the nematode's chance of survival. Root exudates contain a range of compounds which mediate belowground interactions with pathogenic and beneficial soil organisms. Chemical components of root exudates may deter one organism while attracting another and these compounds alter nematode behaviour and can either attract nematodes to the roots or result in repellence, motility inhibition or even death. In vitro, plant signals present in root exudates, trigger a rapid alteration of the surface cuticle of Meloidogyne incognita and the same changes were also induced by indole-acetic acid (IAA). IAA binds to the chemosensory organs of M. incognito and it is possible that IAA acts as a signal that orientates the nematode on the root surface in the rhizosphere and/or inside the root tissue and thereby promotes nematode infection.  相似文献   

16.
The effects of certain plant steroids (belonging to furostanol glycosides or glycoalkaloids) and -ecdysone on growth and development of phytoparasitic nematodes were studied. It was shown using an experimental system including tomato Lycopersicon esculentum Mill. and root-knot nematode, Meloidogyne incognita Kofoid et White, that a steroid molecule exhibits significant nematicidal activity if it contains a carbohydrate moiety and an additional heterocycle in the steroid core. The maximum nematicidal activity is inherent in glycosides containing chacotriose as the carbohydrate moiety of the molecule. Some compounds tested in this work could be used for protecting plants against phytoparasitic nematodes.  相似文献   

17.
Experiments were carried out to investigate the nematicidal potential of a cyanobacterium, Oscillatoria chlorina, against the root-knot nematode, Meloidogyne arenaria on tomato plants grown in pots filled with 500 cm3 of field soil infested with 12-s stage juveniles (J2)/cm3 soil. Incorporation of freeze-dried cyanobacterial powder into potted field soil at the rate of 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) 5 days prior to tomato planting, reduced root galling, final population of M. arenaria and increased vegetative growth of tomato plants and root-mass production, compared with untreated control (P > or = 0.05). The beneficial effect of adding cyanobacterial powder into infested potted field soil increased exponentially with concentration up to 0.8%. Root galling and nematode population decreased by 68.9% and 97.6%, respectively at the highest dose (1%) of cyanobacterial powder compared with the untreated control. Addition of cyanobacterial powder into infested potted field soil at 5 days before planting was the most effective followed by 2 days before and at the time of tomato planting. We conclude that application rate and timing are important factors in the control of root-knot nematodes with O. chlorina.  相似文献   

18.
Two hundred and nineteen bacterial strains were isolated from cow dung. Among these, 59 isolates displayed nematicidal activity against the model nematode Caenorhabditis elegans. Of the 59 bacterial strains, 17 killed >90 % of the tested nematodes within 1 h. Based on their 16S rRNA sequences, these 17 strains were identified as Alcaligenes faecalis, Bacillus cereus, Proteus penneri, Providencia rettgeri, Pseudomonas aeruginosa, Pseudomonas otitidis, Staphylococcus sciuri, Staphylococcus xylosus, Microbacterium aerolatum, Pseudomonas beteli. Among these 17 strains, 14 produced volatile organic compound(s) that inhibited the mobility of the C. elegans nematodes. These 14 strains also showed nematicidal activity against a plant pathogenic nematode Meloidogyne incognita. This is the first report demonstrating nematicidal activity for strains in genera Proteus, Providencia and Staphylococcus.  相似文献   

19.
For this report, we examined the toxic effects of three plant-derived isothiocyanate compounds on second-stage juveniles (J2) of Heterodera glycines. We found significant differences among compounds in the concentration required to affect nematodes, according to mortality and behavioral measurements. The concentrations required to affect behavior were significantly lower than those required for mortality. Both mortality and behavioral measurements were used to investigate whether nematodes in a quiescent state display decreased sensitivity to isothiocyanates compared with actively moving nematodes. Mortality measurements revealed that quiescent nematodes were significantly less sensitive to isothiocyanates than active nematodes. All behavioral measurements following exposure to benzyl- and phenyl isothiocyanate showed significant differences in sensitivity between quiescent and active nematodes. However, significant differences between quiescent and active nematodes were observed in only one of the five behavioral measurements following exposure to allyl isothiocyanate. These results expand the list of plant-derived compounds toxic to H. glycines and illustrate the impact of behavioral quiescence on nematode sensitivity to exogenous toxins.  相似文献   

20.
AIMS: The aim was to determine the influence of some Aspergillus species on the production of nematicidal agent(s) in vitro and biocontrol of Meloidogyne javanica in tomato by Pseudomonas fluorescens strains CHA0 and CHA0/pME3424. METHODS AND RESULTS: Six species of Aspergillus, isolated from the rhizosphere of certain crops, produced a variety of secondary metabolites in vitro. Culture filtrate (CF) obtained from Ps. fluorescens strain CHA0 and its2,4-diacetylphloroglucinol overproducing mutant CHA0/pME3424 grown in King's B liquid medium caused significant mortality of M. javanica juveniles in vitro. Bacterial growth medium amended with CF of A. niger enhanced nematicidal and beta-galactosidase activities of fluorescent pseudomonads while A. quadrilineatus repressed such activities. Methanol or ethyl acetate extracts of the CF of A. niger markedly optimized bacterial efficacy to cause nematode deaths while hexane extract of the fungus had no influence on the nematicidal activity of the bacterial strains. A. niger applied alone or in conjunction with the bacterial inoculants inhibited root-knot nematode galling in tomato. On the other hand, A. quadrilineatus used alone or together with CHA0 did not inhibit nematode galling but when used in combination with strain CHA0/pME3424 did reduce galling intensity. CONCLUSIONS: Aspergillus niger enhances the production of nematicidal compounds by Ps. fluorescensin vitro and improves biocontrol potential of the bacterial inoculants in tomato while A. quadrilineatus reduces bacterial performance to suppress root-knot nematodes. SIGNIFICANCE AND IMPACT OF THE STUDY: Rhizosphere harbours a variety of micro-organisms including bacteria, fungi and viruses. Aspergillus species are ubiquitous in most agricultural soils and generally produce a variety of secondary metabolites. Such metabolites synthesized by Aspergillus species may influence the production of nematicidal agents and subsequent biocontrol performance of the bacterial inoculants against plant-parasitic nematodes. This fact needs to be taken into consideration when using biocontrol strains in an agriculture system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号