首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For the majority of dicotyledonous plants, cytokinesis in PMC is staged only once, i.e., after the completion of two cycles of caryokinesis. In the article, a cytological picture and the frequency characteristics of anomalies are shown, in which the cytokinesis in the PMCs of transgenic tobacco plants was already initiated after the first meiotic division. It is shown that, in such cells, the basic processes of cytoskeletal reorganization, which is typical for the simultaneous type of cytokinesis, remained unmodified. However, in most cases, premature division of cytoplasm took place with abnormalities, e.g., with the formation of a membranous “tunnel” or “gash.” It has been detected that the initialization of an additional round of cytokinesis is not an obstacle to the performance of the nuclear cycle or cytokinesis after the second meiotic division. Thus, in the presence of this anomaly, there is a change in the type of cytoplasm division, i.e., of simultaneous to successive.  相似文献   

2.
Four oligosaccharides (penta-, hexa-, hepta- and octa-saccharide) derived from Paris polyphylla var. yunnanensis have been synthesized efficiently using a convergent glycosylation strategy. The tobacco (Nicotiana tabacum L.) growth bioactivities of the synthesized oligosaccharides were examined, using tissue-cultured seedlings grown on solid MS medium. After 2 or 3 weeks, all four oligosaccharides had stimulated tobacco seedling growth at 1.0 ppm and the pentasaccharide showed the most significant stimulus effects. Further experiments showed that the effects of pentasaccharide on tobacco growth had an obvious concentration-dependent relationship in the range of 0.1–1.0 ppm. This stimulus effect showed some decrease when the pentasaccharide concentration was higher than 1.0 ppm. At 1.0 ppm, pentasaccharide had the most significant effects, which caused a 520% fresh weight increase of tobacco. The bioactivity of these synthesized oligosaccharides suggested that they may be good prospects for the application in the control of plant growth and development.  相似文献   

3.
4.
Genome-wide single-nucleotide polymorphisms (SNPs) are highly useful in unraveling genetic insights and are essential to accelerate selections for genetic improvement in tobacco. The discovery of genome-wide SNPs in tobacco is very complex due to its high level of repetitive genome and polyploidy. At present, publicly available genomic data on SNPs are very limited, which warrants the need for high-throughput SNPs for application in tobacco breeding. In this research paper, we describe our efforts on SNP discovery by whole genome resequencing of 18 flue-cured Virginia (FCV) tobacco genotypes and annotation of SNPs in the tobacco genome. A large amount of data of about 225 GB per genotype was generated, with an average read depth of 50× using paired-end next-generation sequencing (NGS) with the HiSeq 2500 platform. The discovery of a large number of SNPs and indels was attempted to assist mapping and, thus, the selection processes to develop superior tobacco breeding lines. Discovered SNPs, their functional annotation, mapping to the reference genome, and their relative positioning in the linkage group are discussed in this paper.  相似文献   

5.
Transgenic Nicotiana tabacum L. cv. SR1 plants, characterized by an increase in the level of dsRNA-specific hydrolytic activity after induction by wounding, were obtained. The Solanum lycopersicum anionic peroxidase gene promoter (new for plant genetic engineering) was for the first time used for the induced expression of the target Serratia marcescens RNase III gene. Upon infection with the tobacco mosaic virus (TMV), the transgenic plants of the obtained lines did not differ significantly from the control group in the level of TMV capsid protein accumulation. In general, no delay in the development of the infection symptoms was observed in transgenic plants as compared with the control group. The obtained transgenic plants represent a new model for the study of the biological role of endoribonucleases from the RNase III family, including in molecular mechanisms of resistance to pathogens.  相似文献   

6.
In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves.  相似文献   

7.
Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.  相似文献   

8.
9.
Primary transformants of SR1 Nicotiana tabacum plants with RNA interference-based silencing of the gene for extracellular ribonuclease Nk1 were obtained. It was demonstrated that the profiles of ribonuclease activities of leaf protein extracts from these plants lacked ribonuclease with electrophoretic mobility corresponding to that of the Nk1 protein. Primary transformants did not differ phenotypically from control plants. They represent a new model for investigation of the biological role of extracellular ribonucleases, including the molecular mechanisms of resistance to pathogens.  相似文献   

10.
The polymorphism, similarities and relationships among Nicotiana tabacum L. cultivars were assessed with RAPD analyses. One hundred and forty-nine bands were detected, of which 94 were polymorphic (63.1 %). A primer distinguishing all of the tested cultivars was found. High similarity between cultivars was revealed, and cultivar relationships were estimated through cluster analysis (UPGMA) based on RAPD data.The experiments in this study were carried out at the South Center Tobacco Breeding Research of China; the expense was provided by Yunnan Tobacco Company.  相似文献   

11.
Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato.  相似文献   

12.

Background  

We have investigated the possibility and feasibility of producing the HPV-11 L1 major capsid protein in transgenic Arabidopsis thaliana ecotype Columbia and Nicotiana tabacum cv. Xanthi as potential sources for an inexpensive subunit vaccine.  相似文献   

13.
A transgenic approach to manipulation of endosperm development has been investigated. Nicotiana tabacum cv. Xanthi, an endosperm-containing dicotyledon, has been used as a model plant and the 2.6 kb wheat high molecular weight (HMW) glutenin subunit 12 promoter has been used fused either to the gus reporter gene (HMWgus construct)—to study promoter characteristics—or to the Agrobacterium ipt gene—to study the effect of cytokinin (CK) over-expression on assimilate accumulation in the seed. In transgenic tobacco the promoter:gus fusion showed that HMW is an endosperm-specific promoter with maximum expression 20 days after anthesis (DAA), corresponding to the mid to late stages of seed development. Transgenic plants containing the HMWipt construct showed no morphological abnormalities but they had an average increase in seed weight and total ethanol-insoluble carbohydrates and protein content of 8.1%, 7.0% and 8.3%, respectively. SDS PAGE analysis demonstrated that the effect on protein accumulation was non-specific. The highest values of the parameters analysed correlated with moderate increases in the levels of biologically active CKs. These results suggest that ectopic expression of small amounts of CKs can be used to increase storage assimilate accumulation without a detrimental effect on development.  相似文献   

14.
15.
The oxidative deamination of methylated putrescine by a diamine oxidase activity (DAO) is an important step in the biosynthesis of nicotine in tobacco and tropane alkaloids in several Solanaceous plants. A polyclonal rabbit antiserum was previously developed to a purported purified DAO enzyme from Nicotiana tabacum. The antiserum bound to a single 53 kDa protein and immunoprecipitated 80 of DAO activity from tobacco root extracts. In an effort to obtain DAO cDNAs, this antiserum was used to screen a tobacco cDNA expression library and three distinct immunoreactive cDNA clones were isolated. These cDNAs encoded predicted proteins that were either identical or nearly identical to predicted S-adenosylhomocysteine hydrolase (SAHH) from two Nicotiana species. Thus, the rabbit antiserum was not specific to DAO, even though it immunodepleted the majority of DAO activity from root extracts. Alternative hypotheses to explain the DAO immunodepletion results (such as poisoning of DAO activity or that SAHH is a bifunctional enzyme) were tested and ruled out. Therefore, we hypothesize that SAHH associates with DAO as part of a larger multienzyme complex that may function in planta as a nicotine metabolic channel.  相似文献   

16.
17.
18.
19.
The uptake and metabolism of trans-zeatin and/or dihydrozeatin, in correlation with cytokinin oxidase/dehydrogenase (CKX) and β-glucosidase activity, were studied in leaf segments derived from wild-type (WT) and transgenic (T) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) during in vitro induction of shoot organogenesis. T explants harbored the maize gene Zm-p60.1β-glucosidase. Higher levels of shoot regeneration were observed on T explants in the early stages of cultivation. In WT explants, the content of cytokinin (CK)-O- and N-glucosides increased. In T explants, a higher content of Z-9-riboside and Z-9-riboside-5′-monophosphate and higher CKX activity during the early stage of cultures were found. A positive correlation was obtained for bioactive CK content and the organogenic response in T explants. Our results indicate a connection between the organogenic capacity of tobacco explants, metabolism of endogenous CKs and uptake of exogenous CKs from the cultivation medium.  相似文献   

20.
The aim of our study was to identify the highest expressing rubisco small subunit (RbcS) promoters (pRbcS) from the cotyledons of germinating seedlings of Brassica rapa var. oleifera to drive high-level and preferably stage-specific transgenic protein expression in Brassicaceae plants. We cloned four new pRbcS promoters using several approaches, including the construction of a cDNA library and use of genome walking technique. Real-time PCR analysis of RbcS mRNA expression clearly showed that two of these promoters exhibited the highest activity on the germination stage of plant development. We used gusA expression as a reporter of promoter activity in Brassica napus and Nicotiana tabacum plants that were transformed with the constructs using an Agrobacterium-mediated transformation strategy. The mRNA level of RbcS and of gusA was quantified in transformed plants. The data obtained demonstrate that the promoter most active in seedlings under native conditions was also most active in transgenic constructs at the same stage of plant development. The fine structure of the promoters is discussed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号