首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Antibiotic-resistant bacteria have been observed with increasing frequency over the past decades, driving the search for new drugs and stimulating the interest in natural products sources. Endophytic fungi from medicinal plants represent a great source of novel bioactive compounds useful to pharmaceutical and agronomical purposes. Diaporthe terebinthifolii is an endophytic species isolated from Schinus terebinthifolius, a plant used in popular medicine for several health problems. The strain D. terebinthifolii LGMF907 was previously reported by our group to produce secondary metabolites with biological activity against phytopathogens. Based on these data, strain LGMF907 was chosen for bioprospecting against microorganisms of clinical importance and for characterization of major secondary metabolites. In this study, different culture conditions were evaluated and the biological activity of this strain was expanded. The crude extracts demonstrated high antibacterial activity against Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, methicillin-sensitive Staphylococcus aureus, and methicillin-resistant S. aureus. The compounds diaporthin and orthosporin were characterized and also showed activity against the clinical microorganisms evaluated. This study discloses the first isolation of diaporthin and orthosporin from D. terebinthifolii, and revealed the potential of this endophytic fungus to produce secondary metabolites with antimicrobial activity.  相似文献   

3.
Although Lobophora belongs to a marine algal family (Dictyotaceae) that produces a large array of secondary metabolites, it has received little attention compared to other genera, such as Dictyota, in terms of natural compounds isolation and characterization. However, metabolites produced by Lobophora species have been found to exhibit a wide array of bioactivities including pharmacological (e.g. antibacterial, antiviral, antioxidant, antitumoral), pesticidal, and ecological. This review aims to report the state-of-the-art of the natural products isolated from Lobophora species (Dictyotales, Phaeophyceae) and their associated bioactivities. All bioactivities documented in the literature are reported, therefore including studies for which pure active substances were described, as well as studies limited to extracts or fractions. From the early 1980s until today, 49 scientific works have been published on Lobophora chemistry and bioactivity, among which 40 have reported bioactivities. Only six studies, however, have identified, characterized and tested no less than 23 bioactive pure compounds (three C21 polyunsaturated alcohols, three fatty-acids, a macrolactone, 11 polyketides, a few sulfated polysaccharides, three sulfolipids, a tocopherol derivative). The present review intends to raise awareness of chemists and biologists given the recent significant taxonomic progress of this brown algal genus, which holds a promising plethora of natural products yet to be discovered with ecological and pharmacological properties.  相似文献   

4.
One of the major challenges of agriculture currently is to obtain higher crop yield. Environmental conditions, cultivar quality, and plant diseases greatly affect plant productivity. On the other hand, several endophytic Bacillus species have emerged as a complementary, efficient, and safe alternative to current crop management practices. The ability of Bacillus species to form spores, which resist adverse conditions, is an advantage of the genus for use in formulations. Endophytic Bacillus species provide plants with a wide range of benefits, including protection against phytopathogenic microorganisms, insects, and nematodes, eliciting resistance, and promoting plant growth, without causing damage to the environment. Bacillus thuringiensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus, B. pumilus, and B. licheniformis are the most studied Bacillus species for application in agriculture, although other species within the genus have also shown great potential. Due to the increasing number of whole-genome sequenced endophytic Bacillus spp. strains, various bioactive compounds have been predicted. These data reveal endophytic Bacillus species as an underexploited source of novel molecules of biotechnological interest. In this review, we discuss how endophytic Bacillus species are a valuable multifunctional toolbox to be integrated with crop management practices for achieving higher crop yield.  相似文献   

5.
Pestalotiopsis-like species are phytopathogenic, causing numerous diseases on different hosts, and are widely distributed in tropical and temperate ecosystems. These taxa were recently segregated into several genera and species having brown to dark brown or olivaceous median cells, with or without knobbed apical appendages, were classified under the new genus Pseudopestalotiopsis. Pseudopestalotiopsis species are well known for their capability to produce novel medicinal compounds that may have medicinal, agricultural and industrial applications. Ixora is among the largest genera in the family Rubiaceae and is cultivated throughout Taiwan, as a garden plant. During a survey of fungal diseases associated with Ixora species in Taiwan, several Pestalotiopsis-like species causing leaf spot were isolated. Based on morphology coupled with single- and multi-gene (ITS, TUB, TEF) phylogenies, these taxa belong to two novel species of Pseudopestalotiopsis and are introduced herein as Ps. ixorae and Ps. taiwanensis. These two new taxa fit well with Pseudopestalotiopsis in having dark concolourous median cells with knobbed apical appendages, but differ from the known species in the size of conidiomata, size of the conidia, the number of apical appendages, the length of basal appendages plus ecology and distribution. Pathogenicity testing showed that Ps. ixorae and Ps. taiwanensis are capable of causing leaf disease on Ixora and to the best of our knowledge, this is the first record of Pseudopestalotiopsis species associated with leaf spots of Ixora in Taiwan.  相似文献   

6.
There is a constant need for novel antibiotic and antioxidant sources due to the ever-increasing resilience of pathogens and the occurrence of chronic diseases. The natural sources of these agents have advantages due to lower production cost, structural variation, and uses of active compounds for pharmaceutical uses. The microbes living in planta termed “endophytes” are alternative sources of host bioactive compounds. In this study, ten endophytic fungi were isolated from Polygonum chinense L. and identified by sequencing of the internal transcribed spacer regions. The fungal strains were fermented and the ethyl acetate extracts were evaluated for antimicrobial and antioxidant capacities. Almost 80% of the endophytes showed antibacterial potency against one or more pathogenic bacteria. Among all strains, Penicillium canescens showed broad-spectrum antimicrobial activity against gram-positive and gram-negative pathogens as well as significant antioxidative and DNA protective capacities. The strain Fusarium chlamydosporum displayed significant anti-radical (126.8?±?6.7 μg/ml) and ferric reducing (84.7?±?2.1 mg AA/g dry extract) capacities. The bio-autography, chromatography, and mass spectroscopy analyses of P. canescens extract revealed the presence of sesquiterpene (germacrene), plasticizer (phthalic acid ester) along with phenolic acids, flavonoid (quercetin), and short chain hydrocarbons. The secondary metabolites of F. chlamydosporum were identified with phenolic acids as bioactive compounds by chromatography and mass spectroscopy. This study indicates P. chinense endophytes as potential sources of antimicrobial and antioxidant compounds for novel drug discovery.  相似文献   

7.
The exploration of poorly studied areas of Earth can highly increase the possibility to discover novel bioactive compounds. In this study, the cultivable fraction of fungi and bacteria from Barents Sea sediments has been studied to mine new bioactive molecules with antibacterial activity against a panel of human pathogens. We isolated diverse strains of psychrophilic and halophilic bacteria and fungi from a collection of nine samples from sea sediment. Following a full bioassay-guided approach, we isolated a new promising polyextremophilic marine fungus strain 8Na, identified as Aspergillus protuberus MUT 3638, possessing the potential to produce antimicrobial agents. This fungus, isolated from cold seawater, was able to grow in a wide range of salinity, pH and temperatures. The growth conditions were optimised and scaled to fermentation, and its produced extract was subjected to chemical analysis. The active component was identified as bisvertinolone, a member of sorbicillonoid family that was found to display significant activity against Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 30 μg/mL.  相似文献   

8.
The genus Diaporthe (asexual state: Phomopsis) comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Although species of Diaporthe have in the past chiefly been distinguished based on host association, studies have confirmed several taxa to have wide host ranges, suggesting that they move freely between hosts, frequently co-colonizing diseased or dead tissue, while some species are known to be host-specific. They are also very frequently isolated as endophytes of seed plants. Due to their importance as plant pathogens, the genus has been thoroughly investigated for secondary metabolites, including during screening programs aimed at the discovery of novel bioactive natural products, but the respective information has never been compiled. Therefore, we have examined the relevant literature to explore and highlight the major classes of metabolites of Diaporthe and their Phomopsis conidial states. These fungi predominantly produce a large number of polyketides, but cytochalasins and other types of commonly encountered fungal secondary metabolites are also predominant in some species. Interestingly, not a single metabolite which is also known from the host plant has ever been isolated as a major component from an endophytic Diaporthe strain, despite the fact that many of the recent studies were targeting endophytic fungi of medicinal plants.  相似文献   

9.
The emergence of a large number of antimicrobialresistant organisms is a cause for concern. Nature is historically the source of drugs; indeed a considerable number of drugs have been developed from microorganisms, and are now used daily in the treatment of infectious diseases. However, the introduction to the pharmaceutical market of new therapeutic molecules has decreased during the last two decades. In this review, the genus Micromonospora is proposed as a biofactory for production of new antibiotics. The genus Micromonospora has been investigated extensively and more than 100 antibiotics have been isolated from diverse Micromonospora strains. In addition, recent developments in analytical, biological and bioinformatics screening tools used in the discovery of new therapeutic compounds are described. It may be possible to revive formerly used antibiotics produced by Micromonospora and study of this genus may facilitate discovery of novel bioactive molecules.  相似文献   

10.
Many Viburnum species are popular ornamental shrubs and, simultaneously, highly valued medicinal plants as a source of many bioactive compounds, including antioxidants. Viburnum bark, flowers, and fruits are widely used in traditional and folk medicine, and the fruits of some species are used as cooking ingredients. The knowledge of the microstructure of Viburnum fruits and the accumulation sites of bioactive substances in these organs is rather poor. Comparative analyses of the microstructure of ripe Viburnum opulus and Viburnum lantana drupes were carried out using light, scanning, and transmission electron microscopes. The location of various groups of metabolites in the fruits of both species was determined with the use of histochemical tests and fluorescence microscopy. Additionally, the major antioxidants, i.e. carotenoids, polyphenols, and flavonoids, were quantified and a number of morphometric traits of the drupes were presented. The V. opulus and V. lantana fruits were found to differ in some morphological traits and in many characteristics of the pericarp anatomy and ultrastructure. It was shown that the Viburnum fruits contained lipids and lipid compounds (carotenoids, essential oils, steroids, and saponins), polyphenols (tannins, flavonoids, and anthocyanins), pectins, and proteins. The fruits of V. opulus contained greater quantities of carotenoids, polyphenols, flavonoids, steroids, and pectins than the V. lantana drupes, whereas the latter were characterised by higher contents of essential oils, saponins, and proteins. The metabolites were located in different pericarp layers, but the greatest amounts were identified in the drupe skin.  相似文献   

11.
Aldehyde inhibitory compounds derived from lignocellulosic biomass pretreatment have been identified as a major class of toxic chemicals that interfere with microbial growth and subsequent fermentation for advanced biofuel production. Development of robust next-generation biocatalyst is a key for a low-cost biofuel production industry. Scheffersomyces (Pichia) stipitis is a naturally occurring C-5 sugar utilization yeast; however, little is known about the genetic background underlying its potential tolerance to biomass conversion inhibitors. We investigated and identified five uncharacterized putative aryl-alcohol dehydrogenase genes (SsAADs) from this yeast as a new source of resistance against biomass fermentation inhibitor 2-furaldehyde (furfural) by gene expression, gene cloning, and direct enzyme assay analysis using partially purified proteins. All five proteins from S. stipitis showed furfural reduction using cofactor NADH. An optimum active temperature was observed at 40 °C for SsAad1p; 30 °C for SsAad3p, SsAad4p, and SsAad5p; and 20 °C for SsAad2p. SsAad2p, SsAad3p, and SsAad4p showed tolerance to a wide range of pH from 4.5 to 8, but SsAad1p and SsAad5p were sensitive to pH changes beyond 7. Genes SsAAD2, SsAAD3, and SsAAD4 displayed significantly enhanced higher levels of expression in response to the challenge of furfural. Their encoding proteins also showed higher levels of specific activity toward furfural and were suggested as core functional enzymes contributing aldehyde resistance in S. stipitis.  相似文献   

12.
Since the discovery of the first antibiotic, natural products have played an important role in chemistry, biology and medicine. To explore the potential of bioactive compounds from microbes isolated from the southeast of Tibet, China, a crude extract library was constructed and screened against Staphylococcus aureus. The strain Nocardiopsis sp. LS150010 was scaled up and subjected to further chemical studies, resulting in the identification of N-salicyloyl-2-aminopropan-1,3-diol (2) and its rare aziridine derivative, madurastatin B3 (1). Their structures were determined by detailed analysis of 1D, 2D NMR and HRMS data. Compounds 1 and 2 displayed significant inhibitory activity against S. aureus and methicillin resistant S. aureus, with MIC values of 6.25 µg/mL. Compound 1 also showed potent inhibitory activity against Bacillus subtilis and Escherichia coli, as well as activity in a Mycobacterium tuberculosis Bacillus Calmette-Guérin infected THP-1 cell model.  相似文献   

13.
In recent years, nanofibers have been developed and widely used in many products, such as cosmetics and medical supplies. They can be fabricated from various synthetic or natural polymers and attached to bioactive compounds. In previous research, polycaprolactone (PCL) nanofibers containing Spirulina extract were demonstrated to be effective on dermal wound healing in a rat model. In this study, we fabricated Spirulina extract-alginate PCL nanofibers using alginate, which has hydrophilic structures capable of holding large amounts of water, to support the backbone of the nanofibers. The morphological characteristics, hydrophilicity, water absorbance, skin adhesiveness, toxicity to human keratinocyte cells (HaCaT), and Spirulina extract emission over time were assessed. Alginate improved the efficacy of Spirulina PCL nanofibers in moisture maintenance and adhesion ability, which highly affected recovery in the rat skin wound model. In conclusion, Spirulina extract-alginate PCL nanofibers could be considered a promising candidate for wound care.  相似文献   

14.
An actinobacteria strain PAL114, isolated from a Saharan soil in Algeria, produces bioactive compounds. Morphological and chemical studies indicated that this strain belongs to the genus Streptomyces. Analysis of the 16S rRNA gene sequence showed a similarity level of 99.8 % with S. griseoflavus LMG 19344T, the most closely related species. Two bioactive compounds, named P44 and P40, were extracted by dichloromethane from the cell-free supernatant broth and were purified by HPLC. Minimum inhibitory concentrations (MIC) of the compounds were determined against pathogenic and toxigenic microorganisms, most of which are multiresistant to antibiotics. The P40 fraction showed a strong activity especially against Candida albicans, Bacillus subtilis, and Staphylococcus aureus and has lower MIC values than those of P44 against most microorganisms tested. Chemical structures of compounds were determined based on spectroscopic and spectrometric analyses (UV-visible, mass, 1H, and 13C NMR spectra). The compounds P44 and P40 were identified as vineomycin A1 and chaetoglobosin A, respectively. Vineomycin A1 is known to be produced by some Streptomyces species. However, chaetoglobosin A is known to be produced only by fungi belonging to the genera Chaetomium, Penicillium, and Calonectria. This is the first time that chaetoglobosin A, known for its antimicrobial, anticancer, and cytotoxic effects, is reported in prokaryotes.  相似文献   

15.
Fungal pathogens are a growing worldwide concern. Declines in a number of economically and agriculturally important plant and animal species pose a significant threat to both biodiversity and food security. Although many effective antifungal agents have been identified, their toxicity often precludes their use with food products or sensitive animal species. This has prompted the exploration of natural products as effective treatment compounds. In the present study, several essential oils were tested for their capacity to limit the growth of the fungal pathogens Ascosphaera apis and Pseudogymnoascus destructans, the causative agents of chalkbrood disease among honey bee larvae and white-nose syndrome among bats, respectively. Essential oils of cinnamon bark, citronella, lemongrass, and orange were exposed to A. apis in contact-dependent oil-agar suspensions as well as in contact-independent shared airspaces. Essential oils of cinnamon bark, citronella, and lemongrass were exposed to P. destructans in contact-dependent oil-agar suspensions. All compounds were found to significantly inhibit mycelial growth at low concentrations, suggesting the potential for these natural products to be used for controlling these and other select fungal pathogens.  相似文献   

16.
Pelagia noctiluca is the most venomous jellyfish in the Mediterranean Sea where it forms dense blooms. Although there is several published research on this species, until now none of the works has been focused on a complete protein profile of the all body constituents of this organism. Here, we have performed a detailed proteomics characterization of the major protein components expressed by P. noctiluca. With that aim, we have considered the study of jellyfish proteins involved in defense, body constituents and metabolism, and furthered explore the significance and potential application of such bioactive molecules. P. noctiluca body proteins were separated by1D SDS–PAGE and 2DE followed by characterization by nanoLC-MS/MS and MALDI-TOF/TOF techniques. Altogether, both methods revealed 68 different proteins, including a Zinc Metalloproteinase, a Red Fluorescent Protein (RFP) and a Peroxiredoxin. These three proteins were identified for the first time in P. noctiluca. Zinc Metalloproteinase was previously reported in the venom of other jellyfish species. Besides the proteins described above, the other 65 proteins found in P. noctiluca body content were identified and associated with its clinical significance. Among all the proteins identified in this work we highlight: Zinc metalloproteinase, which has a ShK toxin domain and therefore should be implicated in the sting toxicity of P. noctiluca.; the RFP which are a very important family of proteins due to its possible application as molecular markers; and last but not least the discovery of a Peroxiredoxin in this organism makes it a new natural resource of antioxidant and anti-UV radiation agents.  相似文献   

17.
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.  相似文献   

18.
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated “cut and paste” mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.  相似文献   

19.
Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.  相似文献   

20.
Fermentation of milk with lactic acid bacteria is the most suitable approach to enrich the bioactive peptides in fermented milk products. So in the present study, two sets of fermented milk (lassi) were prepared. The one lassi was prepared using standard Dahi culture NCDC-167(BD4) and the other one was made with the same Dahi culture combined with Lactobacillus acidophilus NCDC-15 as an adjunct culture. The preparation steps i.e. preheat treatment and incubation period were optimized by using response surface methodology to obtain maximum antioxidant activity. Lassi prepared with adjunct culture using optimized conditions showed an antioxidant activity of 0.66?±?0.01 µM Trolox/mg protein which was significantly higher than that control (0.22?±?0.01 µM Trolox/mg protein). Out of 59 peptide fragments of β casein fermented by L. acidophilus and 24 peptides from control have been identified by LC–MS/MS. Most of the peptides showed the antioxidant activity. The therapeutic potential of fermented milk products could be improved by increased production of bioactive peptides through controlled fermentation using appropriate proteolytic starter strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号