首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

2.
As the largest class of resistant genes, the nucleotide binding site (NBS) has been studied extensively at a genome-wide level in rice, sorghum, maize, barley and hexaploid wheat. However, no such comprehensive analysis has been conducted of the NBS gene family in Triticum urartu, the donor of the A genome to the common wheat. Using a bioinformatics method, 463 NBS genes were isolated from the whole genome of T. urartu, of which 461 had location information. The expansion pattern and evolution of the 461 NBS candidate proteins were analyzed, and 118 of them were duplicated. By calculating the lengths of the copies, it was inferred that the NBS resistance gene family of T. urartu has experienced at least two duplication events. Expression analysis based on RNA-seq data found that 6 genes were differentially expressed among Tu38, Tu138 and Tu158 in response to Blumeria graminis f.sp.tritici (Bgt). Following Bgt infection, the expression levels of these genes were up-regulated. These results provide critical references for further identification and analysis of NBS family genes with important functions.  相似文献   

3.
4.
Phytocyanins (PCs) are ancient blue copper-binding proteins in plants that bind to single type I copper atoms and function as electron transporters. PCs play an important role in plant development and stress resistance. Many PCs are considered to be chimeric arabinogalactan proteins (AGPs). Previously, 38, 62, and 84 PC genes were identified in Arabidopsis thaliana, Oryza sativa, and Brassica rapa, respectively. In this study, we identified 30 putative PC genes in the orchid Phalaenopsis equestris through comprehensive bioinformatics analysis. Based on phylogeny and motif constitution, the P. equestris phytocyanins (PePCs) were divided into five subclasses: 10 early nodulin-like proteins, 10 uclacyanin-like proteins, five stellacyanin-like proteins, four plantacyanin-like proteins, and one unknown protein. Structural and glycosylation predictions suggested that 16 PePCs were glycosylphosphatidylinositol-anchored proteins localized to the plasma membrane, 22 PePCs contain N-glycosylation sites, and 14 are chimeric AGPs. Phylogenetic analysis indicated that each subfamily was derived from a common ancestor before the divergence of monocot and dicot lineages and that the expansion of the PC subfamilies occurred after the divergence of orchids and Arabidopsis. The number of exons in PC genes was conserved. Expression analysis in four tissues revealed that nine PC genes were highly expressed in flowers, stems, and roots, suggesting that these genes play important roles in growth and development in P. equestris. The results of this study lay the foundation for further analysis of the functions of this gene family in plants.  相似文献   

5.
Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.  相似文献   

6.
The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of small grain crops especially wheat (Triticum aestivum L., 2n = 6x = 42, genomes AABBDD) in many parts of the world. The greenbug-resistance gene Gb3 originated from Aegilops tauschii Coss. (2n = 2x = 14, genome DtDt) has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields. We previously mapped Gb3 in a recombination-rich, telomeric bin of wheat chromosome arm 7DL. In this study, high-resolution genetic mapping was carried out using an F2:3 segregating population derived from two Ae. tauschii accessions, the resistant PI 268210 (original donor of Gb3 in the hexaploid wheat germplasm line ‘Largo’) and susceptible AL8/78. Molecular markers were developed by exploring bin-mapped wheat RFLPs, SSRs, ESTs and the Ae. tauschii physical map (BAC contigs). Wheat EST and Ae. tauschii BAC end sequences located in the deletion bin 7DL3-0.82–1.00 were used to design STS (sequence tagged site) or CAPS (Cleaved Amplified Polymorphic Sequence) markers. Forty-five PCR-based markers were developed and mapped to the chromosomal region spanning the Gb3 locus. The greenbug-resistance gene Gb3 now was delimited in an interval of 1.1 cM by two molecular markers (HI067J6-R and HI009B3-R). This localized high-resolution genetic map with markers closely linked to Gb3 lays a solid foundation for map based cloning of Gb3 and marker-assisted selection of this gene in wheat breeding.  相似文献   

7.
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family belongs to a group of plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and biotic and abiotic stress response. Although genome-wide analyses of the SnRK2 gene family have been conducted in some species, little is known about the SnRK2 gene family in rubber tree (Hevea brasiliensis). In this study, we identified 10 SnRK2s designated as HbSnRK2.1 to HbSnRK2.10 in the rubber tree genome. The subsequently constructed phylogenetic tree demonstrated that HbSnRK2s have three subfamilies that correlate well with those of Arabidopsis sp. and rice subfamilies. All SnRK2 genes contained nine exons and eight introns. Although the C-terminus was divergent, eight conserved motifs were found. Motifs 1–6 were common to all HbSnRK2s. Expression analysis results showed that 7 of the 10 HbSnRK2s were highly expressed in latex. HbSnRK2.7 was predominantly expressed and simultaneously regulated by abscisic acid, jasmonic acid, and ethylene treatment in laticifers. HbSnRK identification and characterization provided further understanding on the role of ABA signal in the rubber tree.  相似文献   

8.
Avenin-like storage proteins influence the rheological properties and processing quality in common wheat, and the discovery of new alleles will benefit wheat quality improvement. In this study, 13 avenin-like b alleles (TaALPb7D-A–M) were discovered in 108 Aegilops tauschii Coss. accessions. Ten alleles were reported for the first time, while the remaining three alleles were the same as alleles in other species. A total of 15 nucleotide changes were detected in the 13 alleles, resulting in only 11 amino acid changes because of synonymous mutations. Alleles TaALPb7D-E, TaALPb7D-G, and TaALPb7D-J encoded the same protein. These polymorphic sites existed in the N-terminus, Repetitive region (Left), Repetitive region (Right) and C-terminus domains, with no polymorphisms in the signal peptide sequence nor in those encoding the 18 conserved cysteine residues. Phylogenetic analysis divided the TaALPb7Ds into four clades. The Ae. tauschii alleles were distributed in all four clades, while the alleles derived from common wheat, TaALPb7D-G and TaALPb7D-C, belonged to clade III and IV, respectively. Alleles TaALPb7D-G and TaALPb7D-C were the most widely distributed, being present in nine and six countries, respectively. Iran and Turkey exhibited the highest genetic diversity with respect to TaALPb7D alleles, accessions from these countries carrying seven and six alleles, respectively, which implied that these countries were the centers of origin of the avenin-like b gene. The new alleles discovered and the phylogenetic analysis of avenin-like b genes will provide breeding materials and a theoretical basis for wheat quality improvement.  相似文献   

9.
10.
This paper reports the characterization of the low-molecular-weight (LMW) glutenin gene family of Aegilops tauschii (syn. Triticum tauschii), the D-genome donor of hexaploid wheat. By analysis of bacterial artificial chromosome (BAC) clones positive for hybridization with an LMW glutenin probe, seven unique LMW glutenin genes were identified. These genes were sequenced, including their untranslated 3 and 5 flanking regions. The deduced amino acid sequences of the genes revealed four putative active genes and three pseudogenes. All these genes had a very high level of similarity to LMW glutenins characterized in hexaploid wheat. The predicted molecular weights of the mature proteins were between 32.2 kDa and 39.6 kDa, and the predicted isoelectric points of the proteins were between 7.53 and 8.06. All the deduced proteins were of the LMW-m type. The organization of the seven LMW glutenin genes appears to be interspersed over at least several hundred kilo base pairs, as indicated by the presence of only one gene or pseudogene per BAC clone. Southern blot analysis of genomic DNA of Ae. tauschii and the BAC clones containing the seven LMW glutenin genes indicated that the BAC clones contained all LMW glutenin-hybridizing bands present in the genome. Two-dimensional gel electrophoresis of an LMW glutenin extract from Ae. tauschii was conducted and showed the presence of at least 11 distinct proteins. Further analysis indicated that some of the observed proteins were modified gliadins. These results suggest that the actual number of typical LMW glutenins may in fact be much lower than previously thought, with a number of modified gliadins also being present in the polymeric fraction.  相似文献   

11.

Key message

A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat.

Abstract

Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01–AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.
  相似文献   

12.
Aegilops tauschii (goat grass) is the progenitor of the D genome in hexaploid bread wheat. We have screened more than 200 Ae. tauschii accessions for resistance against leaf rust (Puccinia triticina) isolates, which are avirulent on the leaf rust resistance gene Lr1. Approximately 3.5% of the Ae. tauschii accessions displayed the same low infection type as the tester line Thatcher Lr1. The accession Tr.t. 213, which showed resistance after artificial infection with Lr1 isolates both in Mexico and in Switzerland, was chosen for further analysis. Genetic analysis showed that the resistance in this accession is controlled by a single dominant gene, which mapped at the same chromosomal position as Lr1 in wheat. It was delimited in a 1.3-cM region between the restriction fragment length polymorphism (RFLP) markers ABC718 and PSR567 on chromosome 5DL of Ae. tauschii. The gene was more tightly linked to PSR567 (0.47 cM) than to ABC718 (0.79 cM). These results indicate that the resistance gene in Ae. tauschii accession Tr.t. 213 is an ortholog of the leaf rust resistance gene Lr1 of bread wheat, suggesting that Lr1 originally evolved in diploid goat grass and was introgressed into the wheat D genome during or after domestication of hexaploid wheat. Compared to hexaploid wheat, higher marker polymorphism and recombination frequencies were observed in the region of the Lr1 ortholog in Ae. tauschii. The identification of Lr1Ae, the orthologous gene of wheat Lr1, in Ae. tauschii will allow map-based cloning of Lr1 from this genetically simpler, diploid genome.Hong-Qing Ling and Jiwen Qiu have contributed equally to this work  相似文献   

13.
14.
15.
Here, we report for the first time the genome-wide identification and expression analysis of the molecular chaperone BiP genes in Citrus. Six genes encoding the conserved protein domain family GPR78/BiP/KAR2 were identified in the genome of Citrus sinensis and C. clementina. Two of them, named here as CsBiP1 and CsBiP2, were classified as true BiPs based on their deduced amino acid sequences. Alignment of the deduced amino acid sequences of CsBiP1 and CsBiP2 with BiP homologs from soybean and Arabidopsis showed that they contain all the conserved functional motifs of BiPs. Analysis of the promoter region of CsBiPs revealed the existence of cis-acting regulatory sequences involved in abiotic, heat-shock, and endoplasmic reticulum (ER) stress responses. Publicly available RNA-seq data indicated that CsBiP1 is abundantly expressed in leaf, flower, fruit, and callus, whereas CsBiP2 expression is rarely detected in any tissues under normal conditions. Comparative quantitative real-time PCR (qPCR) analysis of expression of these genes between C. sinensis grafted on the drought-tolerant “Rangpur” lime (C. limonia) and -sensitive “Flying Dragon” trifoliate orange (Poncirus trifoliata) rootstocks showed that CsBiP1 was upregulated by drought stress on the former but downregulated on the latter, whereas the CsBiP2 mRNA levels were downregulated on drought-stressed “Flying Dragon,” but remained constant on “Rangpur.” CsBiP2 upregulation was only observed in C. sinensis seedlings subjected to osmotic and cold treatments. Taken together, these results indicate the existence of two highly conserved BiP genes in Citrus that are differentially regulated in the different tissues and in response to abiotic stresses.  相似文献   

16.
A single gene controlling powdery mildew resistance was identified in the North Carolina germplasm line NC96BGTD3 (NCD3) using genetic analysis of F2 derived lines from a NCD3 X Saluda cross. Microsatellite markers linked to this Pm gene were identified and their most likely order was Xcfd7, 10.3 cM, Xgdm43, 8.6 cM, Xcfd26, 11.9 cM, Pm gene. These markers and the Pm gene were assigned to chromosome 5DL by means of Chinese Spring Nullitetrasomic (Nulli5D-tetra5A) and ditelosomic (Dt5DL) lines. A detached leaf test showed a distinctive disease reaction to six pathogen isolates among the NCD3 Pm gene, Pm2 (5DS) and Pm34 (5DL). An allelism test showed independence between Pm34 and the NCD3 Pm gene. Together, the tests provided strong evidence for the presence of a novel Pm gene in NCD3, and this gene was designated Pm35.  相似文献   

17.
18.
19.
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development.  相似文献   

20.

Background  

Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号