首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR/t rnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.  相似文献   

2.
Soybean transformation is limited by the lack of multiple efficient selectable marker systems. Biolistic transformation of somatic proliferative embryogenic cultures, one of the commonly used soybean transformation methods, relies largely on hygromycin phosphotransferase II (hptII) selection. The purpose of the present study was to establish another efficient selectable marker system to facilitate multiple gene transformations of soybean. We tested neomycin phosphotransferase II (nptII) that has been used successfully in cotyledonary node transformation, but with limited success in transformation of embryogenic cultures. Transgenic events were obtained using nptII with improved G418 selection without generating escapes. G418 selection required longer recovery and selection periods, and resulted in a lower efficiency of initial transformants compared to hygromycin selection. Six independent fertile transgenic plants were recovered using nptII and G418, a frequency similar to that obtained with hygromycin selection. Soybean embryogenic cultures co-transformed with the hptII and nptII markers showed resistance to both hygromycin B and G418, while regeneration and plant fertility were not adversely affected. The nptII will be useful as a second selectable marker for multiple gene transformations in basic and applied soybean research.  相似文献   

3.

Key message

This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops.

Abstract

Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~?97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
  相似文献   

4.
Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces species.  相似文献   

5.
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, γ-Proteobacteria, and α-Proteobacteria) resistant to aminoglycoside antibiotics (gentamicin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.  相似文献   

6.
Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.  相似文献   

7.
8.
9.
Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, selection is based on antibiotic or herbicide resistance genes because they tend to be most efficient. The Synechococcus hemL gene has been successfully employed as a selectable marker for tobacco and alfalfa genetic transformation, by using gabaculine as the selective agent. The gene conferring gabaculine resistance is a mutant form of the hemL gene from Synechococcus PCC6301, strain GR6, encoding a gabaculine insensitive form of the glutamate1-semialdehyde aminotransferase (GSA) enzyme. In the present study we compared the transformation and selection efficiency of the common selection method based on the Streptomyces hygroscopicus bar gene conferring resistance to Bialaphos®, with both the Synechococcus hemL gene and a Medicago sativa mutated GSA gene (MsGSAgr) conferring resistance to phytotoxin gabaculine. Callus derived from immature embryos of the durum wheat cultivar Varano were simultaneously co-bombarded with bar/hemL and bar/MsGSAgr genes. After gene delivery, the marker genes were individually evaluated through all the selection phases from callus regeneration to adult plant formation, and compared for their transformation and selection efficiency. The integration of the three genes in the T0 generation was confirmed by PCR analysis with specific primers for each gene and southern blot analysis. Both Synechococcus hemL and MsGSA were more efficient than bar for biolistic transformation (2.8% vs. 1.8% and 1.1% vs. 0.5%) and selection (79% vs. 43% and 87% vs. 50%). Thus, an efficient selection method for durum wheat transformation was established that obviates the use of herbicide resistance genes.  相似文献   

10.
The broad-specificity amino acid racemase (Bsar) from Pseudomonas putida catalyzes the racemization of various amino acids, offering a flexible and feasible platform to develop a new non-antibiotic selectable marker system for plant transformation. In the present study, we demonstrated that a Bsar variant, Bsar-R174K, that is useful as a selectable marker gene in Arabidopsis and rice that were susceptible to l-lysine and D-alanine. The introduction of wild-type Bsar, Bsar-R174K or Bsar-R174A into E. coli lysine or asparagine auxotrophs was able to rescue the growth of these microorganisms in minimal media supplemented with selectable amino acid enantiomers. The transformation of Arabidopsis with Bsar or Bsar variants based on d-alanine selection revealed that Bsar-R174K had the greatest efficiency (2.40%), superior to kanamycin selection-based transformation (1.10%). Whereas, l-lysine-based selection exhibited lower efficiency for Bsar-R174K (0.17%). The progenies of selected Bsar-R174K transgenic Arabidopsis revealed normal growth properties. In addition, Bsar-R174K transgenic rice was obtained on l-lysine medium with an efficiency of 0.9%, and the progenies of the transgenic rice revealed morphologically normal phenotypes comparable with their wild-type counterparts. This study presents the first report of broad range amino acid racemase Bsar-R174K as a non-antibiotic selectable marker system applied in transgenic plants.  相似文献   

11.
Experiments on fusion of mesophyllic protoplasts of Solanum tuberosum (Lugovskoi and Slavyanka cultivars) possessing the nptII gene in the nuclear DNA with transplastome Solanum rickii plants (which possess the aadA gene) that we have derived previously, are performed. Hybrid plants with the genes aadA and nptII, the chloroplasts of S. rickii and S. tuberosum, and a hybrid nuclear genome were obtained in a selection medium containing the antibiotics kanamycin, spectomycin, and streptomycin. The result is confirmed by results of PCR analyses.  相似文献   

12.
Tomato (Solanum lycopersicum) is a model crop plant for the study of fruit ripening and disease resistance. Here we present a systemic study on in planta transformation of tomato with Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA1303 binary vector bearing HPTII as a plant selectable marker and mGFP/GUS fusion as the reporter gene. We attempted the transformation of tomato at different developmental stages viz. during seed germination, seedling growth, and floral bud development. The imbibition of seeds with Agrobacterium suspension led to seed mortality. The vacuum infiltration of seedlings with Agrobacterium suspension led to sterility in surviving plants. Successful transformation could be achieved either by dipping of developing floral buds in the Agrobacterium suspension or by injecting Agrobacterium into the floral buds. Most floral buds subjected to dip as well as to injection either aborted or had arrested development. The pollination of surviving floral buds with pollen from wild-type plants yielded fruits bearing seeds. A transformation efficiency of 0.25–0.50% was obtained on floral dips/floral injections. Transgenic plants were selected by screening seedlings for hygromycin resistance. The presence of the transgene in genomic DNA was confirmed by Southern blot analysis and expression of the reporter gene up to the T4 generation. The amenability of tomato for in planta transformation simplifies the generation of transgenic tomato plants obviating intervening tissue culture.  相似文献   

13.
The demand for INSULIN is increasing rapidly along with the increased number of diabetic patients. Using the CRE/loxP system, we developed a selective marker-free system without crossing to produce PROINSULIN in transgenic plant. In frame of this approach, the induced promoter pRD29A was isolated from Arabidopsis. The CRE recombinase gene was placed under the control of pRD29A between two loxP recombination sites together with the selective NPTII gene. Furthermore, the binary vector with CRE recombinase and PROINSULIN was constructed and introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium-mediated transformation. Gene excision was used to remove the sequence between the two loxP sites at the presence of 200 mM NaCl. PCR analysis showed that self-excision occurred in several T0 transgenic plants. Transgenic plants without any marker gene successfully expressed PROINSULIN. This auto-excision strategy provides efficient means of removing the selectable marker gene from transgenic plants. It is an efficient method for producing bio-safe recombinant protein and other valuable substances in plants.  相似文献   

14.
15.
Pleurotus ostreatus is widely cultivated worldwide, but the lack of an efficient transformation system regarding its use restricts its genetic research. The present study developed an improved and efficient Agrobacterium tumefaciens-mediated transformation method in P. ostreatus. Four parameters were optimized to obtain the most efficient transformation method. The strain LBA4404 was the most suitable for the transformation of P. ostreatus. A bacteria-to-protoplast ratio of 100:1, an acetosyringone (AS) concentration of 0.1 mM, and 18 h of co-culture showed the best transformation efficiency. The hygromycin B phosphotransferase gene (HPH) was used as the selective marker, and EGFP was used as the reporter gene in this study. Southern blot analysis combined with EGFP fluorescence assay showed positive results, and mitotic stability assay showed that more than 75% transformants were stable after five generations. These results showed that our transformation method is effective and stable and may facilitate future genetic studies in P. ostreatus.  相似文献   

16.
17.
Many farmer-popular indica rice (Oryza sativa L.) cultivars are recalcitrant to Agrobacterium-mediated transformation through tissue culture and regeneration. In planta transformation using Agrobacterium could therefore be a useful alternative for indica rice. A simple and reproducible in planta protocol with higher transformation efficiencies than earlier reports was established for a recalcitrant indica rice genotype. Agrobacterium tumefaciens containing the salt tolerance-enhancing Pea DNA Helicase45 (PDH45) gene, with the reporter and selectable marker genes, gus-INT (β-glucuronidase with intron) and hygromycin phosphotransferase (hpt), respectively, were used. Overnight-soaked mature embryos were infected and allowed to germinate, flower, and set T1 seeds. T0 plants were considered positive for the transgene if the spikelets of one or more of their panicles were positive for gus. Thereafter, selection at T1 was done by germination in hygromycin and transgenic status re-confirmation by subjecting plantlet DNA/RNA to gene-specific PCR, Southern and semi-quantitative RT-PCR. Additionally, physiological screening under saline stress was done at the T2 generation. Transformation efficiency was found to be 30–32% at the T0 generation. Two lines of the in planta transformed seedlings of the recalcitrant rice genotype were shown to be saline tolerant having lower electrolyte leakage, lower Na+/K+, minimal leaf damage, and higher chlorophyll content under stress, compared to the WT at the T2 generation.  相似文献   

18.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

19.

Key message

A rapid and efficient Agrobacterium -mediated transformation system in sorghum has been developed employing standard binary vectors and bar gene as a selectable marker.

Abstract

Sorghum (Sorghum bicolor) is an important food and biofuel crop worldwide, for which improvements in genetic transformation are needed to study its biology and facilitate agronomic and commercial improvement. Here, we report optimization of regeneration and transformation of public sorghum genotype P898012 using standard binary vectors and bar gene as a selectable marker. The tissue culture regeneration time frame has been reduced to 7–12 weeks with a yield of over 18 plants per callus, and the optimized transformation system employing Agrobacterium tumefaciens strain AGL1 and the bar with a MAS promoter achieved an average frequency over 14 %. Of randomly analyzed independent transgenic events, 40–50 % carry single copy of integrated T-DNA. Some independent transgenic events were derived from the same embryogenic callus lines, but a 3:1 Mendelian segregation ratio was found in all transgenic events with single copy as estimated by Southern blots. The system described here should facilitate studies of sorghum biology and agronomic improvement.
  相似文献   

20.
On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5′RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号