首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苗期遮荫对棉花产量与品质形成的影响   总被引:6,自引:3,他引:3  
为揭示棉麦两熟共生期遮荫对棉花产量与品质形成的影响。在棉花苗期利用模拟棉麦两熟共生期遮荫的方法进行了研究。结果表明,遮荫对棉铃形成的影响因果枝,果节部位而异,遮荫有利于棉株下(1-3果枝),中(4-6果枝),上(7-9果枝)部果枝内围(1-2果节)铃的形成,对外围(≥3果节)尤其顶部果枝(≥10果枝)外围铃形成不利,从而决定铃重也随果枝,果节部位相应地变化,但遮荫对单株平均铃重的影响畔 小,变遮荫棉花籽棉产量而论,下,中部果枝的内围铃籽棉产量高于常规棉,在上,顶部果枝则相反,各部位果枝外围铃的籽棉产量均低于常规棉,遮荫棉花内,外围铃分布为1:0.36(常规棉为1:0.58),产量分布为1:0.42(常规棉为1:0.72)。苗期遮荫对棉纤维,棉籽品质性状的影响也主要在顶部果枝和上部果枝外围铃,综合分析遮荫棉花产量与品质的形成,棉花苗期耐遮荫性品种间存在差异。在本研究中以中9418耐遮荫性最强,中棉所19和春矮早次之。  相似文献   

2.
The plant growth regulator PGR-IV has been reported to improve the growth, boll retention, and yield of cotton (Gossypium hirsutum L.) under optimum growing conditions. However, little is known about the response of cotton to PGR-IV under low light stress. A 3-year field study was conducted to determine if applying PGR-IV before an 8-day period of shade (63% light reduction) benefitted the growth and yield of shaded cotton. Shading during early squaring did not affect yield. Shading after the first flower stage significantly increased leaf chlorophyll concentration and fruit abscission and decreased the leaf photosynthetic rate, nonstructural carbohydrate concentrations, and lint yield. Foliar application of PGR-IV at 292 mL ha−1 at early squaring and first flower did not improve the leaf photosynthetic rate of shaded cotton. However, shaded plants receiving PGR-IV had higher nonstructural carbohydrate concentrations in the floral buds and significantly lower fruit abscission than the shaded plants without PGR-IV. Applying PGR-IV to the foliage before shading resulted in a numeric increase (6–18%) in lint yield compared with shaded plants without PGR-IV. The decreased fruit abscission from the application of PGR-IV was associated with improved assimilate translocation. The yield enhancement from foliar application of PGR-IV was attributed to increased fruit retention. However, the average boll weight of shaded plants with PGR-IV tended to be lower than that of shaded plants without PGR-IV. Lint percentage was not affected by PGR-IV. Foliar application of PGR-IV appears beneficial for increasing the fruit retention of shaded cotton. Received June 12, 1997; accepted January 19, 1998  相似文献   

3.
Agricultural crops experience diverse mechanical stimuli, which may affect their growth and development. This study was conducted to investigate the effects of mechanical stresses caused by hanging labels from the flower petioles (HLFP) on plant shape and cotton yields in four cotton varieties: CCRI 41, DP 99B, CCRC 21, and BAI 1. HLFP significantly reduced plant height by between 7.8% and 36.5% in all four lines and also significantly reduced the number of fruiting positions per plant in the CCRI 41, DP 99B and CCRC 21 lines. However, the number of fruiting positions in BAI 1 was unaffected. HLFP also significantly reduced the boll weight for all four cultivars and the seed cotton yields for CCRI 41, DP 99B and BAI 1. Conversely, it significantly increased the seed cotton yield for CCRC 21 by 11.2%. HLFP treatment did not significantly affect the boll count in the fruiting branches of the 1st and 2nd layers in any variety, but did significantly reduce those on the 3rd and 4th fruiting branch layers for CCRI 41 and DP 99B. Similar trends were observed for the number of bolls per FP. In general, HLFP reduced plant height and boll weight. However, the lines responded differently to HLFP treatment in terms of their total numbers of fruiting positions, boll numbers, seed cotton yields, etc. Our results also suggested that HFLP responses might be delayed for some agronomy traits of some cotton genotypes, and that hanging labels from early-opening flowers might influence the properties related with those that opened later on.  相似文献   

4.
Development of cotton (Gossypium hirsutum L.) squares (i.e. floral buds with bracts) is fundamental for yield formation. A 2-year field study was conducted to determine dry weight (DW) accumulations of cotton leaves, floral bracts and floral buds, and the changes in concentrations of non-structural carbohydrates (hexoses, sucrose and starch) in these tissues during square ontogeny as affected by fruiting positions within the plant canopy. During square development, DW accumulation of a subtending sympodial leaf and floral bracts followed a sigmoid growth curve with increasing square age, whereas the DW increase of a floral bud followed an exponential curve. Main-stem node (Node 8, 10 or 12) and branch position (proximal vs. distal) within a plant canopy significantly affected DW accumulations of the leaf, bracts and floral bud. Starch was the dominant non-structural carbohydrate in the three tissues, accounting for more than 65% of total non-structural carbohydrates (TNC). Subtending leaf TNC increased as square age increased. The bracts exhibited a smaller change in TNC than leaves. Non-structural carbohydrate concentration was the lowest in 10-day-old floral buds, and had little change during the first 15 days of square development. Within 5 days prior to anthesis, the floral-bud TNC increased dramatically, tripling at the time of floral anthesis compared with 15-day-old floral buds. Square age and fruiting position significantly affected non-structural carbohydrate concentrations of subtending leaves, bracts, and floral buds. The correlation did not exist between final boll retention and non-structural carbohydrate concentrations of floral buds at different fruiting positions under normal growth conditions. The pattern of floral-bud non-structural carbohydrates during square ontogeny suggests that major events in carbohydrate metabolism occur just prior to anthesis.  相似文献   

5.
Deficit irrigation has great significance for sustainable cultivation of cotton in water scarce arid regions, but this technique creates drought situation that induces stress adaptive changes in cotton plants due to indeterminate growth habit. In the present experiment, the impact of drought stress on assimilates partitioning associated vegetative and reproductive development, and yield quality attributes of cotton were examined under desert conditions. Four levels of drip irrigation including 100, 80, 60, and 40% replenishment of depleted water from field capacity were applied to develop drought stress regimes during two growing seasons (2015 and 2016). Results revealed that under limited water supplies, plant’s preference for allocation of photo-assimilates was roots?>?leaves?>?fruits that substantially increased root–shoot ratio and hampered reproductive growth. Consequently, boll density (m?2), fresh boll weight and lint yield (kg ha?1) were significantly reduced. An obvious change in partitioning of assimilates inside stressed bolls was observed that indicated relatively more accumulation in seeds than fiber, thus reducing the fiber quality. In addition, decreased starch, oil, and protein contents in seeds of stressed plants markedly reduced 100 seeds weight and also the vigor. Later, seed quality confirmatory tests of subsequent years (2016 and 2017) showed significant reduction in emergence counts (m?2) and seedling biomasses of seeds harvested from deficit drip irrigated cotton. These results suggest that deficit irrigation could necessarily be an appropriate yield optimization and water saving technique for cotton in desert environment but, for the best quality fiber and cottonseeds, full irrigation should be preferred.  相似文献   

6.
留营养枝对棉株同化物生产,运转,分配及产量的影响   总被引:8,自引:0,他引:8  
运用^14C示踪技术研究了留营养支棉株^14C同化物生产运转分配规律。结果表明:留营养枝与否对全株^14C总同化量基本没有影响,但留营养2枝棉株果枝叶的相对光合强度(以放射性比强度表示)降低;主茎叶、果枝叶的^14C同化量显著降低;营养2叶具有较高的光合作用强度和向外输送^14C同化物的转运速率,在^14C同化物生产运转分配中占有很重要的地位。留营养枝棉株^14C同化物的转运速率,在^14C同化  相似文献   

7.
施氮量对花铃期棉花果枝生物量累积时空变异特征的影响   总被引:5,自引:1,他引:4  
试验在黄河流域黄淮棉区的河南安阳和长江流域下游棉区的江苏南京棉花大田进行, 氮素设0(N0)、120(N1)、240(N2)、360(N3)、480(N4) kg·hm-2 5个水平,定量分析了不同施氮量对美棉33B花铃期棉花果枝生物量累积时空变异特征的影响.结果表明: 不同施氮量下,两试验点棉株不同果枝部位营养器官、生殖器官、生物量累积时间变异特征均表现为Logistic曲线,空间变异特征存在明显差异.安阳点360 kg·hm-2施氮量、南京点240 kg·hm-2施氮量处理具有快速增长期起始时间早、持续时间短、最大速率大等特征,说明该施氮量水平有利于棉花生物量的快速累积,以形成较高的产量与品质;而施氮量过多或不足均不利于棉株不同果枝部位生物量的累积.可以通过不同的施氮量来调节棉株不同果枝部位快速生长期的生长特征值,以提高棉花的产量和品质.  相似文献   

8.
【目的】针对我国研发的具有自主知识产权的转EPSPS基因抗除草剂棉花,研究其环境适应和生存竞争能力,以评价其环境安全性,为其生产应用提供依据。【方法】试验在河南安阳中国农业科学院棉花研究所试验农场中进行。以转基因(EPSPS)抗草甘膦棉为试验品种,受体材料和中棉所49为对照品种,在正常管理模式下,对棉花的营养生长、生殖生长、产量因子及纤维品质等指标进行比较。【结果】转基因抗草甘膦棉花在苗期、现蕾期、花铃期和吐絮期的株高均低于受体材料,但差异不显著;花铃期,转基因抗草甘膦棉花每株花蕾数比受体材料少3.58个,差异达到显著水平;但在吐絮期其单株铃数比受体材料多1.1个,且其产量比受体材料高91.4 kg·hm~(-2);转基因抗草甘膦棉花的纤维品质也有一定程度的改善。同时,转基因抗草甘膦棉花上述各项生长指标、产量及纤维品质等均与对照品种中棉所49相当。【结论】转基因抗草甘膦棉花在栽培地环境下可正常生长,未对农业生产造成明显的负面影响和风险。  相似文献   

9.
刘贤赵  康绍忠 《生态学报》2002,22(12):2264-2271
对番茄植株做了两种不同程度的遮荫处理,观测了夏季午间遮荫对光合速率,干物质积累量及其在根,茎,叶之间的分配,和叶N,P,K的含量以及经济产量的影响,发现不同时期遮荫影响不同。(1)遮荫增加三个阶段(开花早期,盛花期和开花后期)的气孔导度和胞间CO2浓度,显著降低开花早期中午的净化合速率,但盛花期中度遮荫(40%遮荫)使净光合速率随着时间的增加逐渐上升,在开花后期表现更加明显,平均净光合速率比对照高20%以上,蒸腾速率也增加较多。(2)开花早期和盛花期重度遮荫(如本实验中的75%遮荫)显著降低根,茎的干重,而开花后期中度遮荫的根,茎干重高于对照,但遮荫对叶干重的影响不明显。(3)开花早期和盛花期遮荫不明显影响叶片中N,P,K的含量,但开花后期中度遮荫使N,P,K含量增加,(4)开花早期两种遮荫对果实产量影响较小,但盛花期重度遮荫使产量降低,全部产量中无效部分所占的比例上升,开花后期中度遮荫的总产量和有效产量增加,单果重也增加,这些结果表明,在某些时期中度遮荫可以克服夏天辐射过强,气温过高对番茄的不良影响,对番茄生长,干物质积累和提高产量等有利,在生产上有意义。  相似文献   

10.
以泗棉3号棉花品种为材料,于2010和2011年在南京农业大学牌楼试验站设置铃期(7月13日-8月24日)增温试验,模拟全球增温条件下棉花产量、品质的变化趋势及其生理机制.结果表明: 在铃期增温2~3 ℃(日均温31.1~35.2 ℃)条件下,植株总生物量下降约10%,单株皮棉及籽棉产量降低30%~40%.棉纤维品质变化显著,且不同纤维品质指标对增温的响应程度存在较大差异:马克隆值和断裂比强度显著升高,纤维长度下降,而整齐度指数和伸长率无显著变化.棉株光合能力、干物质累积能力和光合产物输出能力显著下降;可溶性氨基酸、可溶性糖、蔗糖含量及碳氮比均显著下降,而淀粉含量显著上升;增温条件下营养器官干物质分配比例增多,生殖器官干物质分配比例相对减少,经济系数随之降低.棉株下部果枝受增温影响较小,中、上及顶部果枝受增温影响较大.表明在增温2~3 ℃条件下,棉株大部分时间处于热胁迫状态,不仅光合能力下降,而且光合产物向“库”端的转运能力下降,最终导致其减产.  相似文献   

11.
Abscisic Acid and cutout in cotton   总被引:3,自引:1,他引:2       下载免费PDF全文
A decline in growth, flowering, and boll (fruit) retention is referred to as cutout in cotton (Gossypium hirsutum L.). Fruit load affects cutout, possibly through hormonal effects. Experiments were conducted to test the hypothesis that fruits are a source of abscisic acid (ABA) that moves into fruiting branches and growing points where it inhibits growth, flowering, and boll retention. Removal of the flower or young boll at the first node of fruiting branches did not decrease the ABA content of fruiting branches or the abscission zone at the second node. Effects on ABA content of the boll at the second node varied. In one field test, ABA content of bolls at the second node decreased with successive harvests as bolls were removed from first node positions of several fruiting branches. Thus, the effect was cumulative and was not limited to individual branches. Removal of the flower or boll at the first node increased boll retention at the second node. Removal of all flowers during the first 3 weeks of flowering delayed the decreases in growth, flowering, and boll retention that occurred as fruit load increased. But, the ABA content of fruiting branches and mainstem apices was not decreased by early defruiting and did not increase with increasing fruit load. The results do not support the hypothesis that fruits are a source of ABA that moves into fruiting branches and growing points where it then inhibits growth, flowering, and boll retention.  相似文献   

12.
The effect of a deficiency of applied nitrogen on the rate of leaf photosynthesis, and on the subsequent partitioning of 14C-labelled leaf assimilate between new leaf, stem, tillers and root, was investigated in single plants of Lolium temulentum L., grown normally in controlled environments, or grown with collars shading the base of the plant. The nitrogen deficiency reduced the rate of leaf photosynthesis, increased the retention of assimilate in the leaf, suppressed the export of assimilate to tillers, and generally increased the export of assimilate to roots and to new leaves. Shading the base of the plant generally had little effect on the rate of leaf photosynthesis, reduced the export of assimilate to roots, and increased the export of assimilate to new leaf and to the stem, which elongated when shading was imposed.  相似文献   

13.
The partial shading effect on the photosynthetic apparatus of the sunflower (Helianthus annuus L.) was examined by monitoring oxygen evolution, maximum quantum yield of PSII photochemistry in dark-adapted leaves (Fv/Fm), the chlorophyll (Chl) concentrations and the Rubisco contents, and leaf mass per area (LMA) at the leaf level and by determining the concentrations of cytochrome (Cyt) f and the reaction centres of photosystem (PS) I and PSII at the thylakoid level. In this experiment, partial shading was defined as the shading of 2nd leaves with shade cloths, and the whole treatment was defined as the covering of the whole individuals with shade cloths. In the leaf level responses, oxygen evolution, LMA, Chl concentrations and Rubisco contents decreased in all shade treatments administered for six days. Fv/Fm remained constant irrespective of the shade treatments. On the other hand, in the thylakoid-level responses, the concentrations of the thylakoid components per unit Chl and the stoichiometry of the two photosystems showed no statistical difference among the shade treatments. The data obtained from the present study indicate that the partial shading affected the leaf-level responses rather than the thylakoid-level responses. The light received at the lower leaves might serve as a factor in the regulation of the leaf properties of the upper leaves due to the whole plant photosynthesis, while this factor did not have an effect at the thylakoid level.  相似文献   

14.
This study investigated the effects of radiation heat-load reduction by shading on the growth and development of citrus trees in a warm subtropical region. The experiment was conducted from mid-June until late October when daily maximal air temperature averaged 29.3 degrees C. Two-year-old de-fruited Murcott tangor (Citrus reticulata BlancoxCitrus sinensis (L.) Osb.) trees were grown under 30% or 60% shade tunnels, or 60% flat shade (providing midday shade only), using highly reflective aluminized nets. Non-shaded trees were used as the control. Shading reduced direct more than diffuse radiation. Daily radiation was reduced by 35% for the 30% Tunnel and 60% Flat treatments, and by 55% for the 60% Tunnel. Two days of intensive measurement showed that shading increased average sunlit leaf conductance by 44% and photosynthesis by 29%. Shading did not significantly influence root and stem dry weight growth, but it increased the increment in leaf dry weight during the three month period by an average of 28% relative to the control, while final tree height in the 30% Tunnel treatment exceeded the control by 35%. Shoot to root and shoot mass ratios increased and root mass ratio decreased due to shading because of the increase in leaf dry weight. Shading increased starch concentration in leaves while the shadiest treatment, 60% Tunnel, decreased starch concentration in the roots. Carbon isotope ratio (delta(13)C) of exposed leaves that developed under shading was significantly reduced by 1.9 per thousand in the 60% Tunnel, indicating that shading increased CO(2) concentrations at the chloroplasts (C(c)), as would be expected from increased conductance. Substomatal CO(2) concentrations, C(i), computed from leaf net CO(2) assimilation rate and conductance values, also indicate that shading increases internal CO(2) concentrations. Based on tree dry mass, tree height, and total carbohydrates fractions, the 30% Tunnel and the 60% Flat were the optimal shade treatments.  相似文献   

15.
遮荫对夏玉米产量及生长发育的影响   总被引:35,自引:5,他引:35  
在大田条件下研究了不同时期和不同程度遮荫对夏玉米产量及生长发育的影响.结果表明,遮荫显著降低玉米产量.不同时期遮荫对其影响不同,花粒期(从开花到成熟期)遮荫的影响最显著,农大108(ND108)和掖单13号(YD13)遮荫50%、90%处理分别减产67.5%、79.4%和82.9%和86.7%,其次是穗期(从拔节到开花期)遮荫,ND108和YD13分别减产34.1%、55.3%和47.2%、65.7%,而苗期(从出苗到拔节期)遮荫对其影响相对较小,ND108和YD13分别减产16.9%、24.5%和18.9%、24.3%.遮荫对YD13产量的影响大于ND108.遮荫时期对玉米产量的影响显著地大于遮荫程度.遮荫后两个玉米品种的生育进程都延迟,并随着遮荫程度的增加,对其影响加剧.穗期遮荫显著影响玉米的穗分化,花丝数和雄穗分枝数显著降低,对YD13的影响大于ND108.苗期和穗期遮荫显著抑制玉米叶面积、株高和茎节的生长.  相似文献   

16.
Tobacco plants (Nicotiana tabacum L.) were grown in the field and the apex was removed at the 42-day stage. Shading screens were set up which produced 0, 26, 67, and 90% shade. Plants were grown an additional 25 days before leaves from top, middle, and bottom stalk positions were harvested. Each leaf group was analyzed for free sterol, steryl ester, steryl glycoside, and acylsteryl glycoside. The free sterol content was lowest in top leaves and highest in bottom leaves; however, the top leaves had more steryl ester than the bottom leaves. Leaf position had no effect on steryl glycosides and acylsteryl glycosides. Shading did not influence the level of any sterol class; but in general, shading increased stigmasterol and decreased sitosterol. This trend was observed for all sterol classes, and the free sterols showed the largest and most consistent change. The younger top leaves showed a greater response than the older bottom leaves, but bottom leaves always had more stigmasterol than sitosterol even without shade.  相似文献   

17.
花铃期遮荫对棉纤维品质的影响   总被引:5,自引:0,他引:5  
以中棉所41号和鲁棉研18号为试验材料,研究花铃期不同程度遮荫对棉花纤维品质性状的影响.结果表明,遮荫使最终纤维长度变短,且变短幅度随遮荫程度增加而加大,70%遮荫处理比40%遮荫处理平均变短1.01 mm;遮荫延缓纤维伸长期,CK纤维25 d达到最大长度,而遮荫后35 d达到最大长度;遮荫降低纤维断裂比强度,且降低幅度随遮荫程度增加而增大;40%和70%遮荫处理都使纤维麦克隆值和成熟度显著下降.两个供试品种纤维品质性状在遮荫条件下变化趋势一致.  相似文献   

18.
不同生育期遮光对水稻生长发育和产量形成的影响   总被引:52,自引:12,他引:52  
研究了不同生育期遮光45%(水稻生长的前期、中1期、中2期、后期)对水稻形态发育、光合产物积累、稻株养分含量、产量构成等的影响,并重点研究了植株对N、P、K养分的吸收规律。结果表明,各期遮光后均使干物质积累速率降低,植株N、P、K养分吸收量减少,对产量有不同程度的影响,但植株体内N、P、K养分含量上升。前期遮光主要使分蘖数急剧下降,有效穗数减少,叶面积系数下降,产量下降11.56%,但株高增加;中1期遮光后对水稻生长影响不大,产量仅降低5.46%;中2期遮光主要使每穗粒数和千粒重下降,对产量影响较大,降低幅度达30.80%;后期遮光主要影响结实粒和千粒重,其产量最低,降低55.40%.文中还对弱光照条件下的生育期安排和施肥决策提出了建议.  相似文献   

19.
Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1–2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.  相似文献   

20.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号