首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Ubiquitous CCCH nucleic acid-binding motif is found in a wide-variety of organisms. CCCH genes are involved in plant developmental processes and biotic and abiotic stress responses. Brassica rapa is a vital economic crop and classical model plant of polyploidy evolution, but the functions of CCCH genes in B. rapa are unclear.

Results

In this study, 103 CCCH genes in B. rapa were identified. A comparative analysis of the chromosomal position, gene structure, domain organization and duplication event between B. rapa and Arabidopsis thaliana were performed. Results showed that CCCH genes could be divided into 18 subfamilies, and segmental duplication might mainly contribute to this family expansion. C-X7/8-C-X5-C3-H was the most commonly found motif, but some novel CCCH motifs were also found, along with some loses of typical CCCH motifs widespread in other plant species. The multifarious gene structures and domain organizations implicated functional diversity of CCCH genes in B. rapa. Evidence also suggested functional redundancy in at least one subfamily due to high conservation between members. Finally, the expression profiles of subfamily-IX genes indicated that they are likely involved in various stress responses.

Conclusion

This study provides the first genome-wide characterization of the CCCH genes in B. rapa. The results suggest that B. rapa CCCH genes are likely functionally divergent, but mostly involved in plant development and stress response. These results are expected to facilitate future functional characterization of this potential RNA-binding protein family in Brassica crops.
  相似文献   

3.

Background

Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses.

Results

Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions.

Conclusions

Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
  相似文献   

4.
5.

Introduction

In plant metabolomics, metabolite contents are often normalized by sample weight. However, accurate weighing of very small samples, such as individual Arabidopsis thaliana seeds (approximately 20 µg), is difficult, which may lead to irreproducible results.

Objectives

We aimed to establish alternative normalization methods for seed-grain-based comparative metabolomics of A. thaliana.

Methods

Arabidopsis thaliana seeds were assumed to have a prolate spheroid shape. Using a microscope image of each seed, the lengths of major and minor axes were measured by fitting a projected 2-dimensional shape of each seed as an ellipse. Metabolic profiles of individual diploid or tetraploid A. thaliana seeds were measured by our highly sensitive protocol (“widely targeted metabolomics”) that uses liquid chromatography coupled with tandem quadrupole mass spectrometry. Mass spectrometric analysis of 1 µL of solution extract identified more than 100 metabolites. The data were normalized by various seed-size measures, including seed volume (single-grain-based analysis). For comparison, metabolites were extracted from 4 mg of diploid and tetraploid A. thaliana seeds and their metabolic profiles were analyzed by normalization of weight (weight-based analysis).

Results

A small number of metabolites showed statistically significant differences in the single-grain-based analysis compared to weight-based analysis. A total of 17 metabolites showed statistically different accumulation between ploidy types with similar fold changes in both analyses.

Conclusion

Seed-size measures obtained by microscopic imaging were useful for data normalization. Single-grain-based analysis enables evaluation of metabolism of each seed and elucidates the metabolic profiles of precious bioresources by using small amounts of samples.
  相似文献   

6.
7.

Objectives

To identify novel cold-active lipases from fungal sources and improve their production by heterologous expression in Pichia pastoris.

Results

A novel cold-active lipase gene (ReLipB) from Rhizomucor endophyticus was cloned. ReLipB was expressed at a high level in Pichia pastoris using high cell-density fermentation in a 5-l fermentor with the highest lipase activity of 1395 U/ml. The recombinant lipase (RelipB) was purified and biochemically characterized. ReLipB was most active at pH 7.5 and 25 °C. It was stable from pH 4.5–9.0. It exhibited broad substrate specificity towards p-nitrophenyl (pNP) esters (C2–C16) and triacylglycerols (C2–C12), showing the highest specific activities towards pNP laurate (231 U/mg) and tricaprylin (1840 U/mg), respectively. In addition, the enzyme displayed excellent stability with high concentrations of organic solvents including cyclohexane, n-hexane, n-heptane, isooctane and petroleum ester and surfactants.

Conclusions

A novel cold-active lipase from Rhizomucor endophyticus was identified, expressed at a high level and biochemically characterized. The high yield and unique enzymatic properties make this lipase of some potential for industrial applications.
  相似文献   

8.

Introduction

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disease with skeletal fragility and variable extra-skeletal manifestations. To date several point mutations in 18 different genes causing different types of OI have been identified. Mutations in WNT1 compromise activity of the osteoblasts leading to disturbed bone mass accrual, fragility fractures and progressive skeletal abnormalities. The present study was conducted to determine the underlying genetic cause of an autosomal recessive skeletal dysplasia in a large consanguineous family from Chinute, Pakistan.

Materials and methods

Blood was collected from 24 individuals of affected family along with clinical data. Homozygosity mapping was performed to confirm consanguinity. SNPs were identified, followed by whole exome and Sanger sequencing. In silico characterization of WNT1 mutation was performed using multiple platforms.

Results

Nine affected family members exhibited severe bone deformities, recurrent fractures, short stature and low bone mineral density. SNP array data revealed homozygous segments >?1 Mb in length accounting for 2.1–12.7% of the genome in affected individuals and their siblings and a single 6,344,821 bp homozygous region in all affected individuals on chromosome 12q12-q13. This region includes two potential OI candidate genes WNT1 and VDR. We did whole-exome sequencing for both genes in two patients and identified a novel damaging missense mutation in exon 4 of WNT1: c.1168G?>?T (NM_005430) resulting in p.G324C. Sanger sequencing confirmed segregation of mutation with the disease in family.

Conclusion

We report a novel mutation responsible for OI and our investigation expands the spectrum of disease-causing WNT1 mutations and the resulting OI phenotypes.
  相似文献   

9.
10.
11.

Objectives

To produce rosmarinic acid analogues in the recombinant Escherichia coli BLRA1, harboring a 4-coumarate: CoA ligase from Arabidopsis thaliana (At4CL) and a rosmarinic acid synthase from Coleus blumei (CbRAS).

Results

Incubation of the recombinant E. coli strain BLRA1 with exogenously supplied phenyllactic acid (PL) and analogues as acceptor substrates, and coumaric acid and analogues as donor substrates led to production of 18 compounds, including 13 unnatural RA analogues.

Conclusion

This work demonstrates the viability of synthesizing a broad range of rosmarinic acid analogues in E. coli, and sheds new light on the substrate specificity of CbRAS.
  相似文献   

12.
13.
14.
15.

Objective

To heterologously produce the Shigella dysenteriae serotype 1 O-polysaccharide (O-PS, O-antigen) in Escherichia coli by transferring the minimum number of genes instead of the entire O-PS gene cluster.

Results

The three glycosyltransferase genes (rfbR, rfbQ and rfp) responsible for the formation of the O-repeat unit were introduced into E. coli K-12 W3110 to synthesize S. dysenteriae 1 O-PS. The specific O-antigen ladder type with different chain lengths of O-repeat units was observed in the recombinant E. coli strain by SDS-PAGE silver staining and western blotting using S. dysenteriae 1 lipopolysaccharide antiserum. Analysis by mass spectrometry and ion chromatography suggested generation of the specific S. dysenteriae 1 O-repeat unit structure with an extra glucose residue attached.

Conclusions

Recombinant E. coli expressing specific glycosyltransferase genes can generate the O-PS of S. dysenteriae 1 and might be able to synthesize heterologous O-antigens of various pathogenic bacteria for vaccine preparation.
  相似文献   

16.

Objectives

To characterize a novel feruloyl esterase from Escherichia coli BL21 DE3.

Results

The gene encoding BioH was cloned and overexpressed in E. coli. The protein was purified and its catalytic activity was assessed. BioH exhibited feruloyl esterase activity toward a broad range of substrates, and the corresponding kinetic constants for the methyl ferulate, ethyl ferulate, and methyl p-coumarate substrates were: K m values of 0.48, 6.3, and 1.9 mM, respectively, and k cat /K m values of 9.3, 3.8, and 3.8 mM?1 s?1, respectively.

Conclusions

Feruloyl esterase from E. coli was expressed for the first time. BioH was confirmed to be a feruloyl esterase.
  相似文献   

17.

Key message

Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2).

Abstract

LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.
  相似文献   

18.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

19.

Background and aims

The current study was undertaken to investigate the mechanism underlying Boron (B)-alleviated phosphate (P) deficiency in Arabidopsis thaliana. Furthermore, we were interested to explore whether this alleviation of P deficiency by B could extend to Brassica crops.

Methods

Arabidopsis thaliana or Brassica oleracea plants were grown under P-sufficient or -deficient condition with or without extra B for 7 days, then shoots and roots of B. oleracea were sampled for analysis of soluble P content while those of A. thaliana were harvested for analysis of total P content, soluble P content and nitric oxide (NO) as well as for cell wall extraction and RNA isolation.

Results

A. thaliana plants showed reduced root growth and decreased P content in the root under P-deficient conditions, but improved root growth when supplemented with additional B. Further analysis revealed that exogenous B elevated the cell wall pectin content and facilitated the release of P in P-deficient seedlings, thus more soluble P was available to sustain growth under P deficiency. Furthermore, B supplement also increased soluble P in P-deficient cabbage (Brassica oleracea var. capitata L.), an economically important vegetable crop. P deficiency alone was sufficient to induce NO accumulation, and in combination with B application further enhanced NO accumulation, while exogenous application of NO scavenger c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] counteracted this positive effect of B, indicating that NO is positively involved in B-mediated alleviation of P deficiency.

Conclusions

Our study reveals the critical role of B in improving the growth of P-deficient plants, and also provides evidence implicating the involvement of NO signal.
  相似文献   

20.

Objectives

To achieve heterologous biosynthesis of dammarenediol-II, which is the precursor of dammarane-type tetracyclic ginsenosides, by reconstituting the 2,3-oxidosqualene-derived triterpenoid biosynthetic pathway in Escherichia coli.

Results

By the strategy of synthetic biology, dammarenediol-II biosynthetic pathway was reconstituted in E. coli by co-expression of squalene synthase (SS), squalene epoxidase (SE), NADPH-cytochrome P450 reductase (CPR) from Saccharomyces cerevisiae, and SE from Methylococcus capsulatus (McSE), NADPH-cytochrome P450 reductase (CPR) from Arabidopsis thaliana. Sequences of transmembrane domains were truncated if necessary in each of the genes. Different sources of SE/CPR combinations were tested, during which two CPRs were detected to be new reductase partners of McSE. When the gene encoding dammarenediol-II synthase was co-expressed with the 2,3-oxidosqualene expression modules, dammarenediol-II was detected and the production was 8.63 mg l?1 in E. coli under the shake-flask conditions.

Conclusions

Two E. coli chassis for production of dammarenediol-II were established which could be potentially applied in other triterpenoid production in E. coli when different oxidosqualene cyclases (OSCs) introduced into the system.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号