首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The potato upreg1, which encodes a mutated ADP-glucose pyrophosphorylase (AGPase) large subunit, was introduced into rice to evaluate its potential to enhance sink-driven yield productivity in this crop. We also wished to elucidate the activities of the up-regulated allosteric variants of potato AGPase large subunit gene in rice. A T-DNA vector containing the upreg1 gene under the control of the rice glutelin promoter was constructed with a MAR sequence and transformed into rice using Agrobacterium-mediated transformation. Transgenic plants were selected on medium supplemented with phosphinothricin and confirmed by the application of herbicide. A total of 38 transgenic plants were subsequently obtained in which the integration upreg1 into the rice genome was confirmed by Southern blotting. The exogenous AGPase in transgenic rice plants showed a high affinity for 3-phosphoglycerate activator and a low affinity for the orthophosphate inhibitor, as observed in lettuce. The transgenic rice also showed increases in the number of grains per particle, the number of panicles per plant, and also in the fresh weight of the above-ground mass of plant which was about 15% higher than non-transgenic ‘Nak-dong’. The number of seeds per tiller was also found to be about 10% higher in the transgenic plants. However, the net photosynthesis rate showed very little difference in the transgenic rice, and we could not therefore confirm any linkage with the deregulation of allosteric effects. Based on these results, upreg1 mutant genes can be used for the genetic improvement of plant AGPases other than potato and to effectively increase crop yield productivity.  相似文献   

3.
As a ubiquitous reaction, glucosylation controls the bioactivity of cytokinins in plant growth and development.Here we show that genetic manipulation of zeatin-Oglucosylation regulates the formation of important agronomic traits in rice by manipulating the expression of OscZOG1 gene,encoding a putative zeatin O-glucosyltransferase. We found that OscZOG1 was preferentially expressed in shoot and root meristematic tissues and nascent organs. The growth of lateral roots was stimulated in the overexpression lines, but inhibited in RNA interference lines. In shoots, knockdown of OscZOG1 expression by RNA interference significantly improved tillering, panicle branching, grain number per panicle and seed size, which are important agronomic traits for grain yield. In contrast, constitutive expression of OscZOG1 leads to negative effects on the formation of the grain-yielding traits with a marked increase in the accumulation levels of cis-zeatin O-glucoside(c ZOG) in the transgenic rice plants. In this study,our findings demonstrate the feasibility of improving the critical yield-determinant agronomic traits, including tiller number, panicle branches, total grain number per panicle and grain weight by downregulating the expression level of OscZOG1. Our results suggest that modulating the levels of cytokinin glucosylation can function as a fine-tuning switch in regulating the formation of agronomic traits in rice.  相似文献   

4.
5.
Chlorophyll degradation is an important phenomenon in the senescence process. It is necessary for the degradation of certain chlorophyll–protein complexes and thylakoid membranes during leaf senescence. Mutants retaining greenness during leaf senescence are known as 'stay-green' mutants. Non-functional type stay-green mutants, which possess defects in chlorophyll degradation, retain greenness but not leaf functionality during senescence. Here, we report a new stay-green mutant in rice, nyc3 . nyc3 retained a higher chlorophyll a and chlorophyll b content than the wild-type but showed a decrease in other senescence parameters during dark incubation, suggesting that it is a non-functional stay-green mutant. In addition, a small amount of pheophytin a , a chlorophyll a -derivative without Mg2+ ions in its tetrapyrrole ring, accumulated in the senescent leaves of nyc3 . nyc3 shows a similar but weaker phenotype to stay green ( sgr ), another non-functional stay-green mutant in rice. The chlorophyll content of nyc3 sgr double mutants at the late stage of leaf senescence was also similar to that of sgr . Linkage analysis revealed that NYC3 is located near the centromere region of chromosome 6. Map-based cloning of genes near the centromere is very difficult because of the low recombination rate; however, we overcame this problem by using ionizing radiation-induced mutant alleles harboring deletions of hundreds of kilobases. Thus, it was revealed that NYC3 encodes a plastid-localizing α/β hydrolase-fold family protein with an esterase/lipase motif. The possible function of NYC3 in the regulation of chlorophyll degradation is discussed.  相似文献   

6.
转PSAG12-ipt基因水稻延衰性能的初步研究   总被引:8,自引:0,他引:8  
王亚琴  梁承邺 《广西植物》2004,24(6):540-543
研究了叶片衰老抑制基因PSAG1 2 ipt经基因枪导入籼稻不育系中A后 ,转化植株农艺性状和生理特性的变化。结果显示 ,在水稻生育期 ,转化植株相对于对照而言 ,叶绿素、蛋白质含量和SOD(超氧物歧化酶 )活性下降以及MDA(丙二醛 )相对含量上升趋势较缓 ,表现在农艺性状上是单株有效穗数、千粒重明显高于对照。说明叶片衰老抑制基因PSAG1 2 ipt确实具有延缓叶片衰老的功能 ,延长了水稻叶片利用光能的时间 ,使之积累了大量的光合产物 ,增加了产量  相似文献   

7.
Drought is the major environmental factor limiting crop productivity worldwide. We hypothesized that it is possible to enhance drought tolerance by delaying stress-induced senescence through the stress-induced synthesis of cytokinins in crop-plants. We generated transgenic rice (Oryza sativa) plants expressing an isopentenyltransferase (IPT) gene driven by P(SARK) , a stress- and maturation-induced promoter. Plants were tested for drought tolerance at two yield-sensitive developmental stages: pre- and post-anthesis. Under both treatments, the transgenic rice plants exhibited delayed response to stress with significantly higher grain yield (GY) when compared to wild-type plants. Gene expression analysis revealed a significant shift in expression of hormone-associated genes in the transgenic plants. During water-stress (WS), P(SARK)::IPT plants displayed increased expression of brassinosteroid-related genes and repression of jasmonate-related genes. Changes in hormone homeostasis were associated with resource(s) mobilization during stress. The transgenic plants displayed differential expression of genes encoding enzymes associated with hormone synthesis and hormone-regulated pathways. These changes and associated hormonal crosstalk resulted in the modification of source/sink relationships and a stronger sink capacity of the P(SARK)::IPT plants during WS. As a result, the transgenic plants had higher GY with improved quality (nutrients and starch content).  相似文献   

8.
Optimization of plant architecture is important for cultivation and yield of cereal crops in the field. Tillering is an essential factor used to determine the overall architecture of cereal crops. It has long been recognized that the development of branching patterns is controlled by the level and distribution of auxin within a plant. To better understand the relationship between auxin levels and tillering in rice, we examined rice plants with increased or decreased levels of free IAA. To decrease IAA levels, we selected the rice IAA-glucose synthase gene (OsIAGLU) from the rice genome database based on high sequence homology with IAA-glucose synthase from maize (ZmIAGLU), which is known to generate IAAglucose conjugate from free IAA. The OsIAGLU gene driven by the Cauliflower Mosaic Virus 35S promoter was transformed into a rice cultivar to generate transgenic rice plants constitutively over-expressing this gene. The number of tillers and panicles significantly increased in the transgenic lines compared to the wild-type plants, while plant height and panicle length decreased. These results indicate that decreased levels of free IAA likely enhance tiller formation in rice. To increase levels of free IAA, we treated rice plants with three different concentrations of exogenous IAA (1 μM, 10 μM and 100 μM) twice a week by spraying. Exogenous IAA treatment at concentrations of 10 μM and 100 μM significantly reduced tiller number in three different rice cultivars. These results indicate that exogenously applied IAA inhibits shoot branching in rice. Overall, auxin tightly controls tiller formation in rice in a negative way.  相似文献   

9.
以转拟南芥AtNPR1基因的恢复系品种桂99T3代纯合株系为材料,考查其农艺性状及其抗病性,并比较转基因植株与桂99侵染水稻白叶枯病菌后的农艺性状。结果表明:转基因植株表现出对水稻白叶枯病的抗性显著增强77%以上;穗长、剑叶长、有效穗数、一次枝梗数、每穗实粒数、单株产量和谷粒宽等农艺性状与未转基因桂99无显著差别。在受到水稻白叶枯病菌侵染后,转基因植株的一次枝梗数、每穗粒数、每穗实粒数和单株产量等方面均比对照桂99高出13%~78%。说明AtNPR1基因增强了水稻的抗病能力,从而降低了病害引起的产量损失。转基因植株的恢复力不受影响,稻米品质比桂99更加优良。本工作为转基因水稻抗病育种的研究奠定了基础。  相似文献   

10.
The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. l-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO2 assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.  相似文献   

11.
12.
The Nicotiana tabacum transgenic plants expressing a Cucurbita pepo antisense PHYA RNA were obtained. The seedlings of transgenic tobacco with reduced phytochrome A (PHYA) content displayed decreased sensitivity to continuous broad-band far-red radiation (λ > 680 nm). Under far-red irradiance transgenic seedlings showed less elongation of the hypocotyls, more rapid plastid development, more chlorophyll accumulation, less repression of lightdependent NADPH:protochlorophyllide oxidoreductase than wild-type plants that was in accordance with PHYA control of plant development. Dynamics of the far-red radiation dependent changes in low temperature chlorophyll fluorescence spectra for the transgenic and wild-type seedlings were consistent with the more rapid formation of photosynthetic apparatus in the seedlings with reduced PHYA.  相似文献   

13.
14.
为了创制OsBTF3基因沉默的水稻植株、验证该基因在水稻籽粒相关性状中的功能、评价其在水稻遗传改良中潜在的应用价值,设计和合成OsBTF3基因序列的引物、扩增部分基因片段,构建RNAi基因沉默载体、通过农杆菌介导转化愈伤组织、植株再生、潮霉素抗性筛选和PCR验证、定量分析OsBTF3基因表达量,测定转基因水稻籽粒相关性状。结果表明,成功地获得了20个T1代OsBTF3-RNAi转基因株系,OsBTF3基因表达量得到显著的抑制和干扰,抑制效果平均达到85%;与野生型对照株相比,5个所测定RNAi转基因株系的穗长、穗粒数、千粒重和穗粒重等籽粒相关性状明显地减小或降低。因此,RNAi介导的基因沉默导致了OsBTF3基因表达水平抑制以及在籽粒性状中的功能缺失;OsBTF3可能是一个调控水稻籽粒相关性状重要的功能基因。  相似文献   

15.
Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield advantage. Here, we assessed the productivity of wheat–maize intercropping as compared to sole wheat and sole maize, and the associated differences in wheat shoot and leaf traits. In two field experiments, intercrop wheat and maize were both grown in alternating strips consisting of six rows of wheat and two rows of maize. The traits of wheat plants in border rows of the strips were compared to the traits of plants in the inner rows as well as those in sole wheat. Leaf development, chlorophyll concentration and azimuth, as well as the final leaf and ear sizes, tiller dynamics of wheat and yield components of both crops were determined. The relative densities of wheat and maize in the intercrop were 0.33 and 0.67, respectively, but the corresponding relative yields compared to the respective monocultures were 0.46 for wheat and 0.77 for maize. Compared to wheat plants in the inner rows of the intercrop strips as well as in the monoculture, border‐row wheat plants in the intercrop strips had (a) more tillers owing to increased tiller production and survival, and thus more ears, (b) larger top leaves on the main stem and tillers, (c) higher chlorophyll concentration in leaves, (d) greater number of kernels per ear and (e) smaller thousand‐grain weight. Grain yield per metre row length of border‐row wheat was 141% higher than the sole wheat, and was 176% higher than the inner‐row wheat. The results demonstrate the importance of plasticity in architectural traits for yield advantage in multispecies cropping systems.  相似文献   

16.
Water shortage is increasingly limiting the luxury use of water in rice cultivation. In this study, non-flooded mulching cultivation of rice only consumed a fraction of the water that was needed for traditional flooded cultivation and largely maintained the grain yield. We also investigated the growth and development of rice plants and examined grain yield formation when rice was subjected to non-flooded mulching cultivation. One indica hybrid rice combination was grown in a field experiment and three cultivation methods, traditional flooding (TF), non-flooded straw mulching cultivation (SM) and non-flooded plastic mulching cultivation (PM), were conducted during the whole season. Grain yield showed that there was no significant difference between SM and TF rice, but the grain yield of SM cultivation was significantly higher than that of PM. The tiller numbers were inhibited in the early stage under non-flooded mulching cultivation, but the situation was reversed at the later period. Both SM and PM rice reduced dry matter accumulation of shoot, but increased root dry weight, enhanced the remobilization of assimilates from stems to grains and increased the harvest index. During the middle and later grain filling period, mulched plants showed a faster decrease in chlorophyll concentrations, photosynthetic rates of flag leaves and root activity than TF rice, indicating that non-flooded mulching cultivation enhanced plant senescence. In comparison, SM treatment produced higher grain yield and, more dry matter accumulation and panicle numbers than the PM treatment. The overall results suggest that high yield of non-flooded mulching cultivation of rice can be achieved with much improved irrigaUonal water use efficiency.  相似文献   

17.
18.
19.
光合产物是水稻产量的主要来源,因此对水稻后期功能叶片尤其是剑叶形态生理性状的遗传分析对水稻高产育种很重要。利用来源于籼/粳交后代的重组自交系群体为材料对水稻剑叶形态(叶片长、宽、面积)和生理性状(叶绿度、持绿性)进行了QTL定位,并对这些性状与产量、产量性状的相关性进行了分析。两年分别定位了17、6和14个与剑叶形态性状、叶绿度和持绿性有关的QTL,其中10个QTL在两年中共同检测到。相关分析表明,较大的剑叶可以增加穗粒数并显著增加产量,然而叶绿度和持绿性与产量、产量性状无关或呈显著负相关。叶绿度与剑叶大小呈显著负相关以及籼/粳交群体后代半不育是叶绿度和持绿性与产量、产量性状无关或呈显著负相关的可能原因。染色体4上的RM255-RM349区域同时控制3个剑叶形态性状并且解释的变异也较大,该区域可用于遗传改良以提高水稻产量。染色体3上的RM422-RM565区域重叠了3个与持绿性有关的QTL,它们对产量的贡献有待于通过构建近等基因系进行深入研究。  相似文献   

20.
Tian Y  Zhang H  Pan X  Chen X  Zhang Z  Lu X  Huang R 《Transgenic research》2011,20(4):857-866
Rice (Oryza sativa L.) is a warm-season plant exposed to various stresses. Low temperature is an important factor limiting extension of rice cultivation areas and productivity. Previously, we have demonstrated that tomato ERF protein TERF2 enhances freezing tolerance of transgenic tobacco and tomato plants. Herein, we report that overexpression of TERF2 enhances transgenic rice tolerance to cold without affecting growth or agronomic traits. Physiological assays revealed that TERF2 could not only increase accumulation of osmotic substances and chlorophyll, but also reduce reactive oxygen species (ROS) and malondialdehyde (MDA) content and decrease electrolyte leakage in rice under cold stress. Further analysis of gene expression showed that TERF2 could activate expression of cold-related genes, including OsMyb, OsICE1, OsCDPK7, OsSODB, OsFer1, OsTrx23, and OsLti6, in transgenic rice plants under natural condition or cold stress. Thus, our findings demonstrated that TERF2 modulated expression of stress-related genes and a series of physiological adjustments under cold stress, indicating that TERF2 might have important regulatory roles in response to abiotic stress in rice and possess potential utility in improving crop cold tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号