首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
LrgA and LrgB genes have been identified as new components in regulation of programmed cell death (PCD) in bacteria. While in Arabidopsis, it has been documented that AtLrgB plays a crucial role in chloroplast development and photorespiration by acting as a glycolate/glycerate translocator (PLGG1) in the chloroplast inner membrane. However, little is known about LrgB homologs in other plant species, especially those with fleshy fruits. In this study, a homologous gene of AtLrgB, here designated SlLrgB, was identified in tomato. Similar to AtLrgB, structure analysis suggests that the LrgA and LrgB genes have evolved into two domains of the SlLrgB protein. Expression pattern analysis showed that SlLrgB accumulated mainly in green tissues and could be regulated by light, hormone, and abiotic stress treatments. Compared to wild-type plants, parts of SlLrgB overexpression plants displayed etiolated leaves and a growth retardation phenotype, with significantly reduced chlorophyll content both in leaves and fruits. The qPCR results revealed that the SGR gene, which was associated with chlorophyll degradation, was severely repressed. Two key genes in the chlorophyll biosynthesis pathway, CAO and POR, were also suppressed in the SlLrgB overexpression plants. Taken together, we suggest that SlLrgB may play important roles in the regulation of chlorophyll metabolism pathways in tomato.  相似文献   

3.
4.
5.
6.
7.
Xanthine dehydrogenase (EC1.1.1.204; XDH) plays an important role in purine catabolism that catalyzes the oxidative hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. Long attributed to its role in recycling and remobilization of nitrogen, recently, XDH is implicated in plant stress responses and acclimation, such research efforts, however, have thus far been restricted to Arabidopsis XDH-knockdown/knockout studies. This study, using an ectopic overexpression approach, is expected to provide novel findings. In this study, a XDH gene from Vitis vinifera, named VvXDH, was synthesized and overexpressed in Arabidopsis, the transgenic Arabidopsis showed enhanced salt tolerance. The VvXDH gene was investigated and the results demonstrated the explicit role of VvXDH in conferring salt stress by increasing allantoin accumulation and activating ABA signaling pathway, enhancing ROS scavenging in transgenic Arabidopsis. In addition, the water loss and chlorophyll content loss were reduced in transgenic plants; the transgenic plants showed higher proline level and lower MDA content than that of wild-type Arabidopsis, respectively. In conclusion, the VvXDH gene has the potential to be applied in increasing allantoin accumulation and enhancing the tolerance to abiotic stresses in Arabidopsis and other plants.  相似文献   

8.

Main conclusion

Sugar negatively regulates cell death resulting from the loss of fumarylacetoacetate hydrolase that catalyzes the last step in the Tyr degradation pathway in Arabidopsis . Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Previously, we first found that the Tyr degradation pathway plays an important role in plants. Mutation of the SSCD1 gene encoding FAH in Arabidopsis leads to spontaneous cell death under short-day conditions. In this study, we presented that the lethal phenotype of the short-day sensitive cell death1 (sscd1) seedlings was suppressed by sugars including sucrose, glucose, fructose, and maltose in a dose-dependent manner. Real-time quantitative PCR (RT-qPCR) analysis showed the expression of Tyr degradation pathway genes homogentisate dioxygenase and maleylacetoacetate isomerase, and sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G, was up-regulated in the sscd1 mutant, however, this up-regulation could be repressed by sugar. In addition, a high concentration of sugar attenuated cell death of Arabidopsis wild-type seedlings caused by treatment with exogenous succinylacetone, an abnormal metabolite resulting from the loss of FAH in the Tyr degradation pathway. These results indicated that (1) sugar could suppress cell death in sscd1, which might be because sugar supply enhances the resistance of Arabidopsis seedlings to toxic effects of succinylacetone and reduces the accumulation of Tyr degradation intermediates, resulting in suppression of cell death; and (2) sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G might be involved in the cell death in sscd1. Our work provides insights into the relationship between sugar and sscd1-mediated cell death, and contributes to elucidation of the regulation of cell death resulting from the loss of FAH in plants.
  相似文献   

9.
10.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

11.
12.
Two new species of Gentianella (Gentianaceae, Gentianeae, Swertiinae), G. grantii and G. wayqecha, are described from Departamento Cusco, Peru. These two species differ from other Peruvian species of Gentianella in a combination of stems 10–100 cm long; no rosette of basal leaves; cauline leaves 10–75 mm long; flowers in thyrses; and corollas 14–26 mm long, campanulate, and adaxially glabrous. The leaves of G. grantii consist of an appressed pseudopetiole and a spreading, narrowly elliptic-oblong to linear blade; the corollas are lavender; and the corolla lobes are 0.6–0.7× as long as the tube. Gentianella grantii is similar to G. lythroides, of Bolivia, but differs in having more closely spaced leaves and less deeply lobed corollas. The leaves of G. wayqecha are sessile, lanceolate to ovate; the corollas are rose-violet; and the corolla lobes are 0.75–1.35× as long as the tube. Gentianella wayqecha is similar to G. rapunculoides, of Colombia and Ecuador, and G. ruizii, of Peru, but differs from both in its adaxially glabrous corollas and from G. rapunculoides in its less deeply lobed corollas. Both G. grantii and G. wayqecha grow in moist habitats near tree line, and are known only from a area northeast of the city of Cusco.  相似文献   

13.
14.
A plastidic ATP/ADP transporter (AATP) is responsible for importing ATP from the cytosol into plastids. Increasing the ATP supply is a potential way to facilitate anabolic synthesis in heterotrophic plastids of plants. In this work, a gene encoding the AATP protein, named SlAATP, was successfully isolated from tomato. Expression of SlAATP was induced by exogenous sucrose treatment in tomato. The coding region of SlAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of SlAATP significantly increased the starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of StAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AtAGPase), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild-type (WT). These findings suggest that SlAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes invovled in starch biosynthesis. The manipulation of SlAATP expression might be used for increasing starch accumulation of plants in the future.  相似文献   

15.
Rice (Oryza sativa L.) leaf color mutants are excellent models for studying chlorophyll biosynthesis and chloroplast development. In this study, we isolated a stable genetic white and lesion mimic leaf1 (wlml1) mutant from an ethyl methanesulfonate (EMS)-mutagenized population of the indica cultivar TN1. Compared with wild-type TN1, the wlml1 mutant had lower contents of chlorophyll and carotenoids, altered chloroplast ultrastructure, and altered regulation of genes associated with chlorophyll metabolism and chloroplast development. In addition, lesions formed on the leaves of wlml1 plants grown at 20 °C and genes related to disease resistance and antioxidant functions were up-regulated; by contrast, the mutant phenotype was partially suppressed at 28 °C. These findings indicated that WLML1 might play a role in chlorophyll metabolism and chloroplast development, as well as in biotic and abiotic stress responses. Genetic analysis showed that WLML1 was controlled by a recessive nuclear gene, and map-based cloning delimited WLML1 to a 159.7-kb region on chromosome 4 that includes 30 putative open reading frames. Based on these findings, the wlml1 mutant will be a good genetic material for further studies on chlorophyll metabolism and stress responses in rice.  相似文献   

16.
The plastidic ATP/ADP transporter (AATP) imports adenosine triphosphate (ATP) from the cytosol into plastids, resulting in the increase of the ATP supply to facilitate anabolic synthesis in heterotrophic plastids of dicotyledonous plants. The regulatory role of GmAATP from soybean in increasing starch accumulation has not been investigated. In this study, a gene encoding the AATP protein, named GmAATP, was successfully isolated from soybean. Transient expression of GmAATP in Arabidopsis protoplasts and Nicotiana benthamiana leaf epidermal cells revealed the plastidic localization of GmAATP. Its expression was induced by exogenous sucrose treatment in soybean. The coding region of GmAATP was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Constitutive expression of GmAATP significantly increased the sucrose and starch accumulation in the transgenic plants. Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmAATP up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2), granule-bound starch synthase (AtGBSS I and AtGBSS II), soluble starch synthases (AtSSS I, AtSSS II, AtSSS III, and AtSSS IV), and starch branching enzyme (AtSBE I and AtSBE II) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses indicated that the major enzymes (AGPase, GBSS, SSS, and SBE) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to the wild type (WT). These findings suggest that GmAATP may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis. All these results suggest that GmAATP could be used as a candidate gene for developing high starch-accumulating plants as alternative energy crops.  相似文献   

17.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

18.
19.
20.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号