首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

Plants interact by modifying soil conditions in plant-soil feedback processes. Foliar endophytes of grasses exert multiple effects on host rhizosphere with potential consequences on plant-soil feedback. Here, we hypothesize that the grass-endophyte symbiosis impairs soil symbiotic potential, and in turn influences legume performance and nitrogen acquisition.

Methods

Soil was conditioned in pots, growing Lolium multiflorum with or without the fungal endophyte Epichloë and with or without arbuscular mycorrhizal fungi (AMF). Then, Trifolium repens grew in all types of conditioned soils with high or low rhizobia availability.

Results

Endophyte soil conditioning reduced AMF spores number and rhizobial nodules (?27 % and ?38 %, respectively). Seedling survival was lower in endophyte-conditioned soil and higher in mycorrhizal soils (?27 % and +24 %, respectively). High rhizobia-availability allowed greater growth and nitrogen acquisition, independent of soil conditioning. Low rhizobia-availability allowed both effects only in endophyte-conditioned soil.

Conclusion

Endophyte-induced changes in soil (i) hindered symbiotic potential by reducing AMF spore availability or rhizobia nodulation, (ii) impaired legume survival irrespective of belowground symbionts presence, but (iii) mimicked rhizobia effects, enhancing growth and nitrogen fixation in poorly nodulated plants. Our results show that shoot and root symbionts can be interactively involved in interspecific plant-soil feedback.
  相似文献   

2.

Background and aims

Nitrogen deposition and altered precipitation regime are likely to change plant growth, biomass allocation and community structure, which may influence susceptibility of ecosystem functions (i.e. ecosystem carbon exchange) to extreme climatic events, such as drought.

Methods

In a meadow steppe, we deployed a drought treatment on a long-term water and nitrogen addition experiment to investigate resource abundance changes induced variation in the sensitivity of ecosystem carbon exchange to extreme drought.

Results

Compared to the control plots, long-term water and nitrogen addition caused a strong increase in biomass, and a reduction in diversity and root/shoot ratio. Net ecosystem CO2 exchange (NEE) in water and nitrogen addition plots were more sensitive to drought stress than the control plots. The enhanced NEE drought sensitivity (SNEE) in nitrogen fertilization habitat is associated with changes in aboveground biomass and root/shoot ratio, rather than variation in species diversity, while SNEE in the unfertilized plots was controlled by root/shoot ratio. Compared to the water and nitrogen addition plots, the control plots had the highest percentage recovery of ecosystem carbon exchange (RNEE) during the rehydration period. RNEE is likely determined by aboveground biomass and level of damage in the photosynthetic organ.

Conclusion

These findings suggest that long-term changes in precipitation regimes and nitrogen deposition may significant alter the susceptibility of key ecosystem processes to drought stress.
  相似文献   

3.

Introduction

Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive.

Objective

To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells.

Methods

A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(?) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined.

Results

Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism.

Conclusions

Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.
  相似文献   

4.
5.

BACKGROUND

Microbes affect the growth of plants. In this study, the diversity and plant growth-supporting activities of wheat rhizospheric bacteria were examined.

METHODS

Sampling was performed thrice at different phases of plant growth. Microbes associated with the rhizoplane of three wheat varieties (Seher, Lasani, and Faisalabad) were cultured and assessed for their plant growth-promoting abilities based on auxin production, hydrogen cyanide production, phosphate solubilization, and nitrogen fixation.

RESULTS

Bacterial load (CFU/mL) declined, and the succession of bacterial diversity occurred as the plants aged. Most auxin-producing bacteria and the highest concentrations of auxin (77 μg/mL) were observed during the second sampling point at the tillering stage. The Seher variety harbored the most auxin-producing as well as phosphate-solubilizing bacteria. Most of the bacteria belonged to Bacillus and Pseudomonas. Planomicrobium, Serratia, Rhizobium, Brevundimonas, Stenotrophomonas, and Exiguobacterium sp. were also found.

CONCLUSION

These results suggest that the rhizoplane microbiota associated with higher-yield plant varieties have better plant growth-promoting abilities as compared to the microbiota associated with lower-yield plant varieties.
  相似文献   

6.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   

7.

Background and aims

Most investigations of fungi as nematode antagonists have focused on their interactions with nematodes in the soil. This study tested a foliar-isolated endophytic Phialemonium inflatum for its effects against the root-knot nematode as an endophyte in cotton using a seed treatment inoculation.

Methods

Cotton seeds were inoculated with P. inflatum spore suspensions prior to planting. Nematode infection and reproduction were quantified at Day 12 and 6 weeks after nematode egg inoculation, respectively. To establish whether the observed negative effects on nematodes were due to P. inflatum in the soil or as an endophyte in the plant, we also applied a soil fungicide treatment at the seedling stage to kill the fungi outside the plant.

Results

Persistent suppression of nematode penetration and galling, as well as subsequent reproduction, were observed in endophyte-treated plants independent of fungicide treatment, consistent with an endophytic mode of nematode suppression; and these negative effects did not depend on the concentration of fungal inoculum used to treat to the seed.

Conclusions

Our study highlights a novel role for P. inflatum as part of a plant-fungal defensive symbiosis in cotton, as well as the need for a broader understanding of endophyte-plant-nematode ecological interactions.
  相似文献   

8.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

9.

Backgrounds and aims

Interactions between plants can be both positive and negative, denoting facilitation and competition. Although facilitative effects of having legume neighbours (focus on yield productivity) are well studied, a better mechanistic understanding of how legumes interact with non-legumes in terms of root distribution is needed. We tested the effects of neighbour identity, its spatial location, as well as the effects of plant order of arrival on above and belowground traits and root distribution.

Methods

We performed a rhizotron experiment (4 weeks duration) in which we grew maize alone, with only a legume, only another grass, or with both species and tracked roots of the plant species using green and red fluorescent markers.

Results

Maize grew differently when it had a neighbour, with reduced development when growing with wheat compared to alone. Growing with a legume generally equated to the same outcome as not having a neighbour. Roots grew towards the legume species and away from the wheat. Order of arrival affected aboveground traits to a certain extent, but its effects on maize roots were dependent on spatial location.

Conclusions

Our study provides evidence of facilitation, showing the importance of the identity of the neighbours, together with their spatial location, and how order of arrival can modulate the outcome of these initial interactions.
  相似文献   

10.

Aims

A better understanding of how plant growth, N nutrition and symbiotic nitrogen fixation (SNF) are influenced by soil inorganic N availability, for a wide range of legume species, is crucial to optimise legume productivity, N2 fixation, while limiting environmental risks such as N leaching.

Methods

A comparative analysis was performed for ten legume crops, grown in a field experiment and supplied with four N fertiliser rates. Dry matter, N concentration and SNF were measured. In parallel, root elongation rates were studied in a greenhouse experiment.

Results

For most species, N fertilisation had little effect on plant growth and N accumulation. SNF was reduced by soil inorganic N available at sowing but with large differences in the magnitude of the response among species. The response varied according to plant N requirements for growth and plant ability to retrieve inorganic N. Accordingly, root lateral expansion rate measured in RhizoTubes was highly correlated with plant ability to retrieve inorganic N measured in the field experiment.

Conclusion

Combining SNF response to soil inorganic N, shoot N and plant ability to retrieve inorganic N, allowed a robust evaluation of differential response to soil inorganic N among a wide range of legume species.
  相似文献   

11.

Introduction

Aqueous–methanol mixtures have successfully been applied to extract a broad range of metabolites from plant tissue. However, a certain amount of material remains insoluble.

Objectives

To enlarge the metabolic compendium, two ionic liquids were selected to extract the methanol insoluble part of trunk from Betula pendula.

Methods

The extracted compounds were analyzed by LC/MS and GC/MS.

Results

The results show that 1-butyl-3-methylimidazolium acetate (IL-Ac) predominantly resulted in fatty acids, whereas 1-ethyl-3-methylimidazolium tosylate (IL-Tos) mostly yielded phenolic structures. Interestingly, bark yielded more ionic liquid soluble metabolites compared to interior wood.

Conclusion

From this one can conclude that the application of ionic liquids may expand the metabolic snapshot.
  相似文献   

12.

Background and aims

Variation in fire intensity within an ecosystem is likely to moderate fire effects on plant and soil properties. We tested the effect of fire intensity on grassland biomass, soil microbial biomass, and soil nutrients. Additional tests determined plant-microbe, plant-nutrient, and microbe-nutrient associations.

Methods

A replicated field experiment produced a fire intensity gradient. We measured plant and soil microbial biomasses at peak plant productivity the first growing season after fire. We concurrently measured flux in 11 soil nutrients and soil moisture.

Results

Fire intensity positively affected soil nitrogen, phosphorus (P), and zinc but did not appreciably affect plant biomass, microbial biomass, and other soil nutrients. Plant biomass was seemingly (co-)limited by boron, manganese, and P. Microbial biomass was (co-)limited mainly by P and also iron.

Conclusions

In the Northern Great Plains, plant and soil microbial biomasses were limited mainly by P and some micronutrients. Fire intensity affected soil nutrients, however, pulsed P (due to fire) did not result in appreciable fire intensity effects on plant and microbial biomasses. Variable responses in plant productivity to fire are common and indicate the complexity of factors that regulate plant production after fire.
  相似文献   

13.

Aims

Root fungal relationships in forest understory may be affected by tree harvesting. Deschampsia flexuosa forms a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi functioning in nutrient uptake, and a more loose association with dark septate endophytic (DSE) fungi. We asked how harvesting affects fungal colonisations and whether DSE is more prone to change than AM.

Methods

Deschampsia flexuosa plants were sampled close to a control or a cut tree after top-canopy harvesting in a primary successional site. Colonisations were studied using light microscopy. Shoot N%, vegetation cover and soil nutrients were determined.

Results

Tree harvesting did not affect vegetation and soil parameters, except potassium (K+) increasing near cut trees. AM colonisation did not change, while DSE increased. Shoot N% increased with increasing DSE near cut trees. Hyaline septate (HSE) hyphae and soil K+ and magnesium (Mg2+) were positively correlated near control trees. Lichen cover and HSE correlated negatively.

Conclusions

DSE colonisation increased but AM did not change after harvesting. Positive correlation of DSE with shoot N% near cut trees may suggest a role for DSE in favouring plant nitrogen uptake after disturbance in an open microsite. HSE may play a role in K+ and Mg2+ uptake.
  相似文献   

14.

Aims

The role of different soil types for beech productivity and drought sensitivity is unknown. The aim of this experimental study was to compare mycorrhizal diversity between acid sandy and calcareous soils and to investigate how this diversity affects tree performance, nitrogen uptake and use efficiency (NUE).

Methods

Beech trees were germinated and grown in five different soil types (pH 3.8 to 6.7). One-and-a-half-year-old plants were exposed for 6 weeks to sufficient or low soil humidity. Tree biomass, root tip mycorrhizal colonization and community structure, root tip mortality, leaf area, photosynthesis, nitrogen concentrations, NUE and short-term 15N uptake from glutamine were determined.

Results

Soil type did not affect photosynthesis or biomass formation, with one exception in calcareous soil, where root mortality was higher than in the other soil types. Beech in acid soils showed lower mycorrhizal colonization, higher nitrogen tissue concentrations, and lower NUE than those in calcareous soils. Drought had no effect on nitrogen concentrations or NUE but caused reductions in mycorrhizal colonization. Mycorrhizal species richness correlated with nitrogen uptake and NUE. Nitrogen uptake was more sensitive to drought in calcareous soils than in acid soils.

Conclusions

Beech may be more drought-susceptible on calcareous sites because of stronger decrease of organic nitrogen uptake than on acid soils.
  相似文献   

15.
16.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

17.

Background

Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding.

Aim of Review

We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality.

Key Scientific Concepts of Review

Translational metabolomics applied to crop breeding programs.
  相似文献   

18.

Background and aims

Earthworms effect on plant growth is mediated by their dejections or “casts”, a complex mixture of organic matter, minerals and microbes. In casts, different processes such as organic matter mineralization and signal molecule production follow a complex temporal dynamics. An adaptation of root morphology to cast dynamics could allow an efficient nitrogen capture by the plant.

Methods

The plant Brachypodium distachyon was grown in a laboratory experiment with different proportions of casts of increasing ages. Casts were labelled with 15N to quantify the plant N uptake from the casts. Plant biomass and morphology, especially root system structure, were analysed.

Results

The age of casts had an effect on fine root length, highlighting the importance of the dynamics of cast maturation in root adaptation. Plant biomass production was affected by the interaction between the age and proportion of casts. A positive correlation between the 15N proportion in plant tissues and plant biomasses indicated that plants were more efficient in foraging N in casts than in the bulk soil.

Conclusions

Our results suggested that both a timely adaptation of the root system structure and a significant proportion of casts are necessary to observe a positive effect of casts on plant growth.
  相似文献   

19.

Background and aims

Given the worldwide effort to improve the nitrogen (N) economy of crops, it is critical to understand the mechanisms of improved N uptake which have resulted from selection pressure for grain yield in Australian wheat (Triticum aestivum L.). Changes in root system traits and N uptake were examined in nine Australian wheat varieties released between 1958 and 2007.

Methods

Wheat varieties were grown in rhizo-boxes in a glasshouse. We measured nitrogen uptake and mapped root growth and proliferation to quantify root length density (RLD), root length per plant, root biomass, specific root length, and plant nitrogen uptake per unit root length.

Results

Selection for yield reduced total RLD and total root length, and increased N uptake per unit root length that overrode the reduction in root system size, effectively explaining the increase in N uptake. Importantly, N uptake in our experiment under controlled conditions matched field measurements, reinforcing the agronomic significance of the present study.

Conclusions

Wheat varieties released in Australia between 1958 and 2007 increased their N uptake, not because of increasing their root length and RLD, but for progressively increasing the efficiency of their root system in capturing N. Our collection of varieties is therefore an interesting model to probe for variation in the affinity of the root system for nitrate.
  相似文献   

20.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号