共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The role of glutathione (GSH) in the adaptation of wild type Arabidopsis thaliana plants to Cd stress was investigated. The nutrient solution (control or containing 50 or 100 μM Cd) was supplemented with
buthionine sulfoximine (BSO; 50, 100, 500 μM, to decrease the GSH content in plants) or GSH (50, 100, 500 μM, to increase
its content in plants) in order to find how GSH content could regulate Cd stress responses. BSO application did not influence
plant biomass, while exogenous GSH (especially 500 μM) reduced root biomass. BSO (500μM) in combination with Cd (100 μM) increased
Cd toxicity on root growth (by over 50 %), most probably due to reduced GSH content and phytochelatin (PC) accumulation (by
over 96 %). On the other hand, combination of exogenous GSH (500 μM) with Cd (100 μM) was also more toxic to plants than Cd
alone despite a significant increase in GSH and PC accumulation (up to 2.7 fold in the roots). This fact could indicate that
the natural content of endogenous GSH in wild type A. thaliana plants is sufficient for Cd-tolerance. A decrease in this GSH content led to decreased Cd-tolerance of the plants but an
increase in GSH content did not enhance Cd-tolerance, and it showed even toxic effect on the plants. 相似文献
4.
5.
J. Bobrownyzky 《Cytology and Genetics》2016,50(5):324-329
In this study, data on the production of branched root hairs in the seedlings of A. thaliana under progressive water deficit were presented. The overall production of branched hairs was quite high under stress conditions and amounted to 8.27%. On the contrary, this form of root hairs was almost absent in the control group (0.27%). The highest number of branched hairs was produced at the beginning of the stress action. Branched root hairs are quite uniform structures in the sense of their morphology. To solve the question of how the branched hairs grow, the structure of actin cytoskeleton was explored. This structure was different in the root hair and in its branch, which is an indication that the hair stops its growth at the moment when the branching starts. We have also characterized the production of branched root hairs in hormonal mutants of Arabidopsis and found the involvement of auxin in this process. 相似文献
6.
7.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at 相似文献
8.
Roya Razavizadeh Behrokh Shojaie Setsuko Komatsu 《Physiology and Molecular Biology of Plants》2018,24(4):563-575
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene. 相似文献
9.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance. 相似文献
10.
Protein mono-ADP-ribosylation post-translationally transfers the ADP-ribose moiety from the β-NAD+ donor to various protein acceptors. This type of modification has been widely characterized and shown to regulate protein
activities in animals, yeast and prokaryotes, but has never been reported in plants. In this study, using [32P]NAD+ as the substrate, ADP-ribosylated proteins in Arabidopsis were investigated. One protein substrate of 32 kDa in adult rosette leaves was found to be radiolabeled. Heat treatment,
protease sensitivity and nucleotide derivative competition assays suggested a covalent reaction of NAD+ with the 32 kDa protein. [carbonyl-14C]NAD+ could not label the 32 kDa protein, confirming that the modification was ADP-ribosylation. Poly (ADP-ribose) polymerase inhibitor
failed to suppress the reaction, but chemicals that destroy mono-ADP-ribosylation on specific amino acid residues could break
up the linkage, suggesting that the reaction was not a poly-ADP-ribosylation but rather a mono-ADP-ribosylation. This modification
mainly existed in leaves and was enhanced by oxidative stresses. In young seedlings, two more protein substrates with the
size of 45 kDa and over 130 kDa, respectively, were observed in addition to the 32 kDa protein, indicating that different
proteins were modified at different developmental stages. Although the substrate proteins remain to be identified, this is
the first report on the characterization of endogenously mono-ADP-ribosylated proteins in plants. 相似文献
11.
12.
J. A. Bunce 《Photosynthetica》2008,46(4):517-524
Plants differ in how much the response of net photosynthetic rate (P
N) to temperature (T) changes with the T during leaf development, and also in the biochemical basis of such changes in response. The amount of photosynthetic acclimation
to T and the components of the photosynthetic system involved were compared in Arabidopsis thaliana and Brassica oleracea to determine how well A. thaliana might serve as a model organism to study the process of photosynthetic acclimation to T. Responses of single-leaf gas exchange and chlorophyll fluorescence to CO2 concentration measured over the range of 10–35 °C for both species grown at 15, 21, and 27 °C were used to determine the
T dependencies of maximum rates of carboxylation (VCmax), photosynthetic electron transport (Jmax), triose phosphate utilization rate (TPU), and mesophyll conductance to carbon dioxide (g’m). In A. thaliana, the optimum T of P
N at air concentrations of CO2 was unaffected by this range of growth T, and the T dependencies of VCmax, Jmax, and g’m were also unaffected by growth T. There was no evidence of TPU limitation of P
N in this species over the range of measurement conditions. In contrast, the optimum T of P
N increased with growth T in B. oleracea, and the T dependencies of VCmax, Jmax, and g’m, as well as the T at which TPU limited P
N all varied significantly with growth T. Thus B. oleracea had much a larger capacity to acclimate photosynthetically to moderate T than did A. thaliana. 相似文献
13.
14.
15.
Xue-Li Wan Jie Yang Xiao-Bai Li Qiao Zhou Cong Guo Man-Zhu Bao Jun-Wei Zhang 《Plant Molecular Biology Reporter》2016,34(5):899-908
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment. 相似文献
16.
Yonggang Fan Sule Zhang Yaoyao Meng Zhanjing Huang 《Journal of Plant Growth Regulation》2016,35(1):163-171
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana. 相似文献
17.
Plant aquaporins are believed to facilitate water transport across cell membranes. However, the relationship between aquaporins
and drought resistance in plants remains unclear. VfPIP1, a putative aquaporin gene, was isolated from Vicia faba leaf epidermis, and its expression was induced by abscisic acid (ABA). Our results indicated that the VfPIP1 protein was
localized in the plasma membrane, and its expression in V. faba was induced by 20% polyethylene glycol 6000. To further understand the function of VfPIP1, we obtained VfPIP1-expressing transgenic Arabidopsis thaliana plants under the control of the CaMV35S promoter. As compared to the wild-type control plants, the transgenic plants exhibited
a faster growth rate, a lower transpiration rate, and greater drought tolerance. In addition, the stomata of the transgenic
plants closed significantly faster than those of the control plants under ABA or dark treatment. These results suggest that
VfPIP1 expression may improve drought resistance of the transgenic plants by promoting stomatal closure under drought stress. 相似文献
18.
19.
This study describes two phenotypes of Arabidopsis thaliana (ecotype Columbia) developed in vitro under salt stress (75 mM NaCl). The phenotypes 01 and 02 appeared visibly distinguishable by rosette morphology and competence
to produce flowers. Phenotype 01, sensible to salt stress, accumulated high quantities of Na+, showed a slight reduction in dry mass, and high protein and chlorophyll contents. Moreover, its anatomy exhibited some xeromorphic
traits. Phenotype 02, clearly salt tolerant, showed a morphology similar to control plants, displaying typical phyllotactic
rosette and flowering stalk production. Accumulation of Na+, protein and chlorophyll contents were close to control plants. Reversion experiments on NaCl free MS medium, showed a partially
recovered phenotype 01. A threshold salt stress concentration that permits the simultaneous development of two phenotypes,
was found. 相似文献
20.