首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Putidaredoxin (Pdx), a vertebrate-type [2Fe-2S] ferredoxin from Pseudomonas putida, transfers electrons from NADH-putidaredoxin reductase to cytochrome P450cam. Pdx exhibits redox-dependent binding affinities for P450cam and is thought to play an effector role in the monooxygenase reaction catalyzed by this hemoprotein. To understand how the reduced form of Pdx is stabilized and how reduction of the [2Fe-2S] cluster affects molecular properties of the iron-sulfur protein, crystal structures of reduced C73S and C73S/C85S Pdx were solved to 1.45 angstroms and 1.84 angstroms resolution, respectively, and compared to the corresponding 2.0 angstroms and 2.03 angstroms X-ray models of the oxidized mutants. To prevent photoreduction, the latter models were determined using in-house radiation source and the X-ray dose received by Pdx crystals was significantly decreased. Structural analysis showed that in reduced Pdx the Cys45-Ala46 peptide bond flip initiates readjustment of hydrogen bonding interactions between the [2Fe-2S] cluster, the Sgamma atoms of the cysteinyl ligands, and the backbone amide nitrogen atoms that results in tightening of the Cys39-Cys48 metal cluster binding loop around the prosthetic group and shifting of the metal center toward the Cys45-Thr47 peptide. From the metal center binding loop, the redox changes are transmitted to the linked Ile32-Asp38 peptide triggering structural rearrangement between the Tyr33-Asp34, Ser7-Asp9 and Pro102-Asp103 fragments of Pdx. The newly established hydrogen bonding interactions between Ser7, Asp9, Tyr33, Asp34, and Pro102, in turn, not only stabilize the tightened conformation of the [2Fe-2S] cluster binding loop but also assist in formation of a specific structural patch on the surface of Pdx that can be recognized by P450cam. This redox-linked change in surface properties is likely to be responsible for different binding affinity of oxidized and reduced Pdx to the hemoprotein.  相似文献   

2.
The crystal structure of recombinant putidaredoxin reductase (Pdr), an FAD-containing NADH-dependent flavoprotein component of the cytochrome P450cam monooxygenase from Pseudomonas putida, has been determined to 1.90 A resolution. The protein has a fold similar to that of disulfide reductases and consists of the FAD-binding, NAD-binding, and C-terminal domains. Compared to homologous flavoenzymes, the reductase component of biphenyl dioxygenase (BphA4) and apoptosis-inducing factor, Pdr lacks one of the arginine residues that compensates partially for the negative charge on the pyrophosphate of FAD. This uncompensated negative charge is likely to decrease the electron-accepting ability of the flavin. The aromatic side-chain of the "gatekeeper" Tyr159 is in the "out" conformation and leaves the nicotinamide-binding site of Pdr completely open. The presence of electron density in the NAD-binding channel indicates that NAD originating from Escherichia coli is partially bound to Pdr. A structural comparison of Pdr with homologous flavoproteins indicates that an open and accessible nicotinamide-binding site, the presence of an acidic residue in the middle part of the NAD-binding channel that binds the nicotinamide ribose, and multiple positively charged arginine residues surrounding the entrance of the NAD-binding channel are the special structural elements that assist tighter and more specific binding of the oxidized pyridine nucleotide by the BphA4-like flavoproteins. The crystallographic model of Pdr explains differences in the electron transfer mechanism in the Pdr-putidaredoxin redox couple and their mammalian counterparts, adrenodoxin reductase and adrenodoxin.  相似文献   

3.
Diffraction data of two crystal forms (forms I and II) of [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus have been collected to 0.92 A and 1.00 A resolutions, respectively, at 100 K using synchrotron radiation. Anisotropic temperature factors were introduced for all non-hydrogen atoms in the refinement with SHELX-97, in which stereochemical restraints were applied to the protein chain but not to the [4Fe-4S] cluster. The final crystallographic R-factors are 9.8 % for 7.0-0.92 A resolution data of the form I and 11.2 % for the 13.3-1.0 A resolution data of the form II. Many hydrogen atoms as well as multiple conformations for several side-chains have been identified. The present refinement has revised the conformations of several peptide bonds and side-chains assigned previously at 2.3 A resolution; the largest correction was that the main-chain of Pro1 and the side-chain of Lys2 were changed by rotating the C(alpha)-C bond of Lys2. Although the overall structures in the two crystal forms are very similar, conformational differences are observed in the two residues at the middle (Glu29 and Asp30) and the C-terminal residues, which have large temperature factors. The [4Fe-4S] cluster is a distorted cube with non-planar rhombic faces. Slight but significant compression of the four Fe-S bonds along one direction is observed in both crystal forms, and results in the D(2d) symmetry of the cluster. The compressed direction of the cluster relative to the protein is conserved in the two crystal forms and consistent with that in one of the clusters in Clostridium acidurici ferredoxin.  相似文献   

4.
The ability to overexpress [2Fe-2S] ferredoxins inEscherichia coli has opened up exciting research opportunities. High-resolution x-ray structures have been determined for the wild-type ferredoxins produced by the vegetative and heterocyst forms ofAnabaena strain 7120 (in their oxidized states), and these have been compared to structural information derived from multidimensional, multinuclear NMR spectroscopy. The electron delocalization in these proteins in their oxidized and reduced states has been studied by1H,2H,13C, and15N NMR spectroscopy. Site-directed mutagenesis has been used to prepare variants of these ferredoxins. Mutants (over 50) of the vegetative ferredoxin have been designed to explore questions about cluster assembly and stabilization and to determine which residues are important for recognition and electron transfer to the redox partnerAnabaena ferredoxin reductase. The results have shown that serine can replace cysteine at each of the four cluster attachment sites and still support cluster assembly. Electron transfer has been demonstrated with three of the four mutants. Although these mutants are less stable than the wild-type ferredoxin, it has been possible to determine the x-ray structure of one (C49S) and to characterize all four by EPR and NMR. Mutagenesis has identified residues 65 and 94 of the vegetative ferredoxin as crucial to interaction with the reductase. Three-dimensional models have been obtained by x-ray diffraction analysis for several additional mutants: T48S, A50V, E94K (four orders of magnitude less active than wild type in functional assays), and A43S/A45S/T48S/A50N (quadruple mutant).  相似文献   

5.
Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.  相似文献   

6.
The GcpE enzyme converts 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcPP) into (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) in the penultimate step of the DOXP pathway for isoprene biosynthesis. Purification of the enzyme under exclusion of air leads to a preparation that contains solely [4Fe-4S] clusters. Kinetic studies showed that in the presence of the artificial reductant dithionite and MEcPP a new transient iron-sulfur-based signal is detected in electron paramagnetic resonance (EPR) spectroscopy. Similarity of this EPR signal to that detected in ferredoxin:thioredoxin reductase indicates that during the reaction an intermediate is directly bound to the active-site cluster.  相似文献   

7.
The dibenzothiophene (DBT) sulfone monooxygenase BdsA from Bacillus subtilis WU‐S2B catalyzes the conversion of DBT sulfone to 2′‐hydroxybiphenyl 2‐sulfinate. We report the crystal structures of BdsA at a resolution of 2.80 Å. BdsA exists as a homotetramer with a dimer‐of‐dimers configuration in the crystal, and the interaction between E288 and R296 in BdsA is important for tetramer formation. A structural comparison with homologous proteins shows that the orientation and location of the α9‐α12 helices in BdsA are closer to those of the closed form than those of the open form in the EDTA monooxygenase EmoA. Proteins 2017; 85:1171–1177. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
The 58-kDa complex formed between the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), and cytochrome P450cam (CYP101) from the bacterium Pseudomonas putida has been investigated by high-resolution solution NMR spectroscopy. Pdx serves as both the physiological reductant and effector for CYP101 in the enzymatic reaction involving conversion of substrate camphor to 5-exo-hydroxycamphor. In order to obtain an experimental structure for the oxidized Pdx-CYP101 complex, a combined approach using orientational data on the two proteins derived from residual dipolar couplings and distance restraints from site-specific spin labeling of Pdx has been applied. Spectral changes for residues in and near the paramagnetic metal cluster region of Pdx in complex with CYP101 have also been mapped for the first time using 15N and 13C NMR spectroscopy, leading to direct identification of the residues strongly affected by CYP101 binding. The new NMR structure of the Pdx-CYP101 complex agrees well with results from previous mutagenesis and biophysical studies involving residues at the binding interface such as formation of a salt bridge between Asp38 of Pdx and Arg112 of CYP101, while at the same time identifying key features different from those of earlier modeling studies. Analysis of the binding interface of the complex reveals that the side chain of Trp106, the C-terminal residue of Pdx and critical for binding to CYP101, is located across from the heme-binding loop of CYP101 and forms non-polar contacts with several residues in the vicinity of the heme group on CYP101, pointing to a potentially important role in complex formation.  相似文献   

9.
The M2 protein is a small proton channel found in the influenza A virus that is necessary for viral replication. The M2 channel is the target of a class of drugs called the adamantanes, which block the channel pore and prevent the virus from replicating. In recent decades mutations have arisen in M2 that prevent the adamantanes from binding to the channel pore, with the most prevalent of these mutations being S31N. Here we report the first crystal structure of the S31N mutant crystallized using lipidic cubic phase crystallization techniques and solved to 1.59 Å resolution. The Asn31 residues point directly into the center of the channel pore and form a hydrogen‐bonded network that disrupts the drug‐binding site. Ordered waters in the channel pore form a continuous hydrogen bonding network from Gly34 to His37.  相似文献   

10.
IscS is a widely distributed cysteine desulfurase that catalyzes the pyridoxal phosphate-dependent desulfuration of L-cysteine and plays a central role in the delivery of sulfur to a variety of metabolic pathways. We report the crystal structure of Escherichia coli IscS to a resolution of 2.1A. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell dimensions a=73.70A, b=101.97A, c=108.62A (alpha=beta=gamma=90 degrees ). Molecular replacement with the Thermotoga maritima NifS model was used to determine phasing, and the IscS model was refined to an R=20.6% (R(free)=23.6%) with two molecules per asymmetric unit. The structure of E.coli IscS is similar to that of T.maritima NifS with nearly identical secondary structure and an overall backbone r.m.s. difference of 1.4A. However, in contrast to NifS a peptide segment containing the catalytic cysteine residue (Cys328) is partially ordered in the IscS structure. This segment of IscS (residues 323-335) forms a surface loop directed away from the active site pocket. Cys328 is positioned greater than 17A from the pyridoxal phosphate cofactor, suggesting that a large conformational change must occur during catalysis in order for Cys328 to participate in nucleophilic attack of a pyridoxal phosphate-bound cysteine substrate. Modeling suggests that rotation of this loop may allow movement of Cys328 to within approximately 3A of the pyridoxal phosphate cofactor.  相似文献   

11.
Creatinine amidohydrolase (creatininase; EC 3.5.2.10) from Pseudomonas putida, a homohexameric enzyme with a molecular mass of 28.4 kDa per subunit, is a cyclic amidohydrolase catalysing the reversible conversion of creatinine to creatine. The enzyme plays a key role in the bacterial degradation of creatinine. The three-dimensional structure of creatininase from P.putida was determined and refined to 2.1A. The structure shows the six subunits arranged as a trimer of dimers and definitely disproves previous reports that the enzyme has an octameric quaternary structure. Each monomer consists of a central, four-stranded, parallel beta-sheet flanked by two alpha-helices on both sides of the beta-sheet. This topology is unique within the superfamily of amidohydrolases. Moreover, creatininase possesses a novel fold with no close structural relatives within the Protein Data Bank. Each creatininase monomer contains a binuclear zinc centre near the C termini of the beta-strands and the N termini of the main alpha-helices. These zinc ions indicate the location of the active site unambiguously. The active site is entirely buried and is not accessible from the solution without movement of parts of the protein. The two zinc ions are bridged by a water molecule and by an aspartate residue, which acts as a bidentate ligand. They differ from each other in the number and the spatial arrangement of their ligands. One of them is tetrahedrally and the other trigonal-bipyramidally ligated. Using two water molecules of the first coordination sphere as anchor points, a creatinine-water adduct resembling the transition state of the hydrolysation reaction was modelled into the active site. The resulting complex in combination with structural comparisons with other amidohydrolases enabled us to identify the most probable candidate for the catalytic base and to suggest a putative reaction mechanism. Surprisingly these structural comparisons revealed a similarity in the active-site arrangement between creatininase and the hydantoinase-like cyclic amidohydrolases that was unexpected, given the completely unrelated primary and tertiary structures. In particular, the zinc-bridging aspartate residue of creatininase is a spatially and functionally analogue to a carboxylated lysine residue found in dihydroorotase and the hydantoinases. Hence, creatininase and the hydantoinase-like cyclic amidohydrolases represent a further example of convergent evolution within the enzyme class of hydrolases.  相似文献   

12.
The rate of quinol oxidation by cytochrome bc(1)/b(6)f complex is in part associated with the redox potential (E(m)) of its Rieske [2Fe-2S] center, for which an approximate correlation with the number of hydrogen bonds to the cluster has been proposed. Here we report comparative resonance Raman (RR) characterization of bacterial and archaeal high-potential Rieske proteins and their site-directed variants with a modified hydrogen bond network around the cluster. Major differences among their RR spectra appear to be associated in part with the presence or absence of Tyr-156 (in the Rhodobacter sphaeroides numbering) near one of the Cys ligands to the cluster. Elimination of the hydrogen bond between the terminal cysteinyl sulfur ligand (S(t)) and Tyr-Oeta (as with the Y156W variant, which has a modified histidine N(epsilon) pK(a,ox)) induces a small structural bias of the geometry of the cluster and the surrounding protein in the normal coordinate system, and significantly affects some Fe-S(b/t) stretching vibrations. This is not observed in the case of the hydrogen bond between the bridging sulfide ligand (S(b)) and Ser-Ogamma, which is weak and/or unfavorably oriented for extensive coupling with the Fe-S(b/t) stretching vibrations.  相似文献   

13.
The soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath) is a multicomponent enzyme system required for the conversion of methane to methanol. It comprises a hydroxylase, a regulatory protein, and a reductase. The reductase contains two domains: an NADH-binding and FAD-containing flavin domain and a ferredoxin (Fd) domain carrying a [2Fe-2S] cofactor. Here, we report the solution structure of the reduced form of the 98-amino acid Fd domain (Blazyk, J. L., and Lippard, S. J. Unpublished results) determined by nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics calculations. The structure consists of six beta strands arranged into two beta sheets as well as three alpha helices. Two of these helices form a helix-proline-helix motif, unprecedented among [2Fe-2S] proteins. The [2Fe-2S] cluster is coordinated by the sulfur atoms of cysteine residues 42, 47, 50, and 82. The 10.9 kDa ferredoxin domain of the reductase protein transfers electrons to carboxylate-bridged diiron centers in the 251 kDa hydroxylase component of sMMO. The binding of the Fd domain with the hydroxylase was investigated by NMR spectroscopy. The hydroxylase binding surface on the ferredoxin protein has a polar center surrounded by patches of hydrophobic residues. This arrangement of amino acids differs from that by which previously studied [2Fe-2S] proteins interact with their electron-transfer partners. The critical residues on the Fd domain involved in this binding interaction map well onto the universally conserved residues of sMMO enzymes from different species. We propose that the [2Fe-2S] domains in these other sMMO systems have a fold very similar to the one found here for M. capsulatus (Bath) MMOR-Fd.  相似文献   

14.
Formaldehyde dehydrogenase from Pseudomonas putida (PFDH) is a member of the zinc-containing medium-chain alcohol dehydrogenase family. The pyridine nucleotide NAD(H) in PFDH, which is distinct from the coenzyme (as cosubstrate) in typical alcohol dehydrogenases (ADHs), is tightly but not covalently bound to the protein and acts as a cofactor. PFDH can catalyze aldehyde dismutations without an external addition of NAD(H). The structural basis of the tightly bound cofactor of PFDH is unknown. The crystal structure of PFDH has been solved by the multiwavelength anomalous diffraction method using intrinsic zinc ions and has been refined at a 1.65 A resolution. The 170-kDa homotetrameric PFDH molecule shows 222 point group symmetry. Although the secondary structure arrangement and the binding mode of catalytic and structural zinc ions in PFDH are similar to those of typical ADHs, a number of loop structures that differ between PFDH and ADHs in their lengths and conformations are observed. A comparison of the present structure of PFDH with that of horse liver ADH, a typical example of an ADH, reveals that a long insertion loop of PFDH shields the adenine part of the bound NAD(+) molecule from the solvent, and a tight hydrogen bond network exists between the insertion loop and the adenine part of the cofactor, which is unique to PFDH. This insertion loop is conserved completely among the aldehyde-dismutating formaldehyde dehydrogenases, whereas it is replaced by a short turn among typical ADHs. Thus, the insertion loop specifically found among the aldehyde-dismutating formaldehyde dehydrogenases is responsible for the tight cofactor binding of these enzymes and explains why PFDH can effectively catalyze alternate oxidation and reduction of aldehydes without the release of cofactor molecule from the enzyme.  相似文献   

15.
CYP199A2, a cytochrome P450 enzyme from Rhodopseudomonas palustris, oxidatively demethylates 4-methoxybenzoic acid to 4-hydroxybenzoic acid. 4-Ethylbenzoic acid is converted to a mixture of predominantly 4-(1-hydroxyethyl)-benzoic acid and 4-vinylbenzoic acid, the latter being a rare example of CC bond dehydrogenation of an unbranched alkyl group. The crystal structure of CYP199A2 has been determined at 2.0-Å resolution. The enzyme has the common P450 fold, but the B′ helix is missing and the G helix is broken into two (G and G′) by a kink at Pro204. Helices G and G′ are bent back from the extended BC loop and the I helix to open up a clearly defined substrate access channel. Channel openings in this region of the P450 fold are rare in bacterial P450 enzymes but more common in eukaryotic P450 enzymes. The channel is hydrophobic except for the basic residue Arg246 at the entrance, which probably plays a role in the specificity of this enzyme for charged benzoates over neutral phenols and benzenes. The substrate binding pocket is hydrophobic, with Ser97 and Ser247 being the only polar residues. Computer docking of 4-ethylbenzoic acid into the active site suggests that the substrate carboxylate oxygens interact with Ser97 and Ser247, and the β-methyl group is located over the heme iron by Phe185, the side chain of which is only 6.35 Å above the iron in the native structure. This binding orientation is consistent with the observed product profile of exclusive attack at the para substituent. Putidaredoxin of the CYP101A1 system from Pseudomonas putida supports substrate oxidation by CYP199A2 at ∼6% of the activity of the physiological ferredoxin. Comparison of the heme proximal faces of CYP199A2 and CYP101A1 suggests that charge reversal surrounding the surface residue Leu369 in CYP199A2 may be a significant factor in this low cross-activity.  相似文献   

16.
The crystal structure of the 2[4Fe-4S] ferredoxin from Chromatium vinosum has been solved by molecular replacement using data recorded with synchrotron radiation. The crystals were hexagonal prisms that showed a strong tendency to develop into long tubes. The hexagonal prisms diffracted to 2.1 A resolution at best, and a structural model for C. vinosum ferredoxin has been built with a final R of 19.2%. The N-terminal domain coordinates the two [4Fe-4S] clusters in a fold that is almost identical to that of other known ferredoxins. However, the structure has two unique features. One is a six-residue insertion between two ligands of one cluster forming a two-turn external loop; this short loop changes the conformation of the Cys 40 ligand compared to other ferredoxins and hampers the building of one NH...S H-bond to one of the inorganic sulfurs. The other remarkable structural element is a 3.5-turn alpha-helix at the C-terminus that covers one side of the same cluster and is linked to the cluster-binding domain by a six-residue external chain segment. The charge distribution is highly asymmetric over the molecule. The structure of C. vinosum ferredoxin strongly suggests divergent evolution for bacterial [3/4Fe-4S] ferredoxins from a common ancestral cluster-binding core. The unexpected slow intramolecular electron transfer rate between the clusters in C. vinosum ferredoxin, compared to other similar proteins, may be attributed to the unusual electronic properties of one of the clusters arising from localized changes in its vicinity rather than to a global structural rearrangement.  相似文献   

17.
18.
NirD is part of the nitrite reductase complex NirBD that catalyses the reduction of nitrite to NH3 in nitrate assimilation and anaerobic respiration. The crystal structure analysis of NirD from Mycobacterium tuberculosis shows a double β‐sandwich fold. NirD is related in three‐dimensional structure and sequence to the Rieske proteins; however, it does not contain any Fe–S cluster or other cofactors that might be involved in electron transfer. A cysteine residue at the protein surface, conserved in NirD homologues lacking the iron–sulfur cluster might be important for the interaction with NirB and possibly stabilize one of the Fe–S centers in this subunit. Proteins 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The crystal structure at 2A resolution of the Ca2+ -binding protein S100P   总被引:1,自引:0,他引:1  
S100P is a small calcium-binding protein of the S100 EF-hand-containing family of proteins. Elevated levels of its mRNA are reported to be associated with the progression to hormone independence and metastasis of prostate cancer and to be associated with loss of senescence in human breast epithelial cells in vitro. The first structure of human recombinant S100P in calcium-bound form is now reported at 2.0A resolution by X-ray diffraction. A flexible linker connects the two EF-hand motifs. The protein exists as a homodimer formed by non-covalent interactions between large hydrophobic areas on monomeric S100P. Experiments with an optical biosensor to study binding parameters of the S100P monomer interaction showed that the association rate constant was faster in the presence of calcium than in their absence, whereas the dissociation rate constant was independent of calcium. The K(d) values were 64(+/-24)nM and 2.5(+/-0.8) microM in the presence and in the absence of calcium ions, respectively. Dimerization of S100P is demonstrated in vivo using the yeast two-hybrid system. The effect of mutation of specific amino acids suggests that dimerization in vivo can be affected by amino acids on the dimer interface and in the hydrophobic core.  相似文献   

20.
The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 catalyzes the dioxygenation of carbazole; the 9aC carbon bonds to a nitrogen atom and its adjacent 1C carbon as the initial reaction in the mineralization pathway. The CARDO system is composed of ferredoxin reductase (CarAd), ferredoxin (CarAc), and terminal oxygenase (CarAa). CarAc acts as a mediator in the electron transfer from CarAd to CarAa. To understand the structural basis of the protein-protein interactions during electron transport in the CARDO system, the crystal structure of CarAc was determined at 1.9 A resolution by molecular replacement using the structure of BphF, the biphenyl 2,3-dioxygenase ferredoxin from Burkholderia cepacia strain LB400 as a search model. CarAc is composed of three beta-sheets, and the structure can be divided into two domains, a cluster-binding domain and a basal domain. The Rieske [2Fe-2S] cluster is located at the tip of the cluster-binding domain, where it is exposed to solvent. While the overall folding of CarAc and BphF is strongly conserved, the properties of their surfaces are very different from each other. The structure of the cluster-binding domain of CarAc is more compact and protruding than that of BphF, and the distribution of electric charge on its molecular surface is very different. Such differences are thought to explain why these ferredoxins can act as electron mediators in respective electron transport chains composed of different-featured components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号