首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Only few biological markers are currently available for the routine diagnosis of brain damage-related disorders including cerebrovascular, dementia, and other neurodegenerative diseases. In this study, post-mortem cerebrospinal fluid samples were used as a model of massive brain insult to identify new markers potentially relevant for neurodegeneration. The protein pattern of this sample was compared to the one of cerebrospinal fluid from healthy subjects by two-dimensional gel electrophoresis. Using gel imaging, N-terminal microsequencing, mass spectrometry, and immunodetection techniques, we identified 13 differentially expressed proteins. Most of these proteins have been previously reported to be somehow associated with brain destruction or with the molecular mechanisms underlying certain neurodegenerative conditions. These data indicate that the identified proteins indeed represent potential biomarkers of brain damage. We recently showed that H-FABP, a protein highly homologous to E-FABP and A-FABP identified in this study, is a potential marker of Creutzfeldt-Jakob disease and stroke.  相似文献   

2.
The impact of blood contamination on the proteome of cerebrospinal fluid   总被引:1,自引:0,他引:1  
Human cerebrospinal fluid (CSF) is in direct contact with the brain extracellular space. Beside the secretion of CSF by the choroid plexus the fluid also derives directly from the brain by the ependymal lining of the ventricular system and the glial membrane and from blood vessels in the arachnoid. Therefore, biochemical change in the brain may be reflected in the CSF. CSF is a potential source of protein molecular indices of central nervous system function and pathology. However, various amounts of blood contamination in CSF may arise during sample acquisition. The concentration of protein in the CSF is only 0.2 to 0.5% that of blood. Minor contamination of CSF with blood during collection of the fluid may dramatically alter the protein profile confounding the identification of potential biomarkers. We have analyzed CSF and CSF spiked with increasing amounts of whole blood using proteomic techniques. We detected at least four blood specific highly abundant proteins: hemoglobin, catalase, peroxiredoxin and carbonic anhydrase I. These proteins can be used as blood contamination markers for proteomic analysis of CSF. Proteins in blood contaminated CSF samples were less stable compared to neat CSF at 37 degrees C suggesting that blood borne protease may induce protein degradation in CSF during sample acquisition. This analysis was aimed at identification of proteins found primarily in CSF, those found primarily in blood and assessment of the impact of blood contamination on those proteins found in both fluids.  相似文献   

3.
Human cerebrospinal fluid (CSF) proteome is actively investigated to identify relevant biomarkers and therapeutic targets for neurological disorders. Approximately 80% of CSF proteome originate from plasma, yielding a high dynamic range in CSF protein concentration and precluding identification of potential biomarkers originating from CNS cells. Here, we have adapted the most complete multiaffinity depletion method available to remove 20 abundant plasma proteins from a CSF pool originating from patients with various cognitive disorders. We identified 622 unique CSF proteins in immunodepleted plus retained fractions versus 299 in native CSF, including 22 proteins hitherto not identified in CSF. Parallel analysis of neuronal secretome identified 34 major proteins secreted by cultured cortical neurons (cell adhesion molecules, proteins involved in neurite outgrowth and axonal guidance, modulators of synaptic transmission, proteases and protease inhibitors) of which 76% were detected with a high confidence in immunodepleted CSF versus 50% in native CSF. Moreover, a majority of proteins previously identified as secretory products of choroid plexus cells or astrocytes were detected in immunodepleted CSF. Hence, removal of 20 major plasma proteins from CSF improves detection of brain cell-derived proteins in CSF and should facilitate identification of relevant biomarkers in CSF proteome profiling analyses.  相似文献   

4.
Proteomic analysis of cerebrospinal fluid from multiple sclerosis patients   总被引:10,自引:0,他引:10  
Dumont D  Noben JP  Raus J  Stinissen P  Robben J 《Proteomics》2004,4(7):2117-2124
Multiple sclerosis is an autoimmune inflammatory demyelinating disease of the central nervous system. Disease mechanisms in multiple sclerosis at the molecular level remain poorly understood and no reliable proteinaceous disease markers are available yet. The goal of the present study is the construction of a protein database of two-dimensional gel electrophoresis (2-DE) separated cerebrospinal fluid (CSF) proteins from multiple sclerosis patients. By means of liquid chromatography tandem mass spectrometry 65 different proteins were identified from 300 spots. Eighteen of these proteins have not been reported previously on 2-DE gels of CSF. Here we report on the identification of these proteins and discuss their potential relation to multiple sclerosis.  相似文献   

5.
The identification of disease markers in human body fluids requires an extensive and thorough analysis of its protein constituents. In the present study, we have extended our analysis of the human cerebrospinal fluid (CSF) proteome using protein prefractional followed by shotgun mass spectrometry. After the removal of abundant protein components from the mixture with the help of immunodepletion affinity chromatography, we used either anion exchange chromatography or sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to further subfractionate the proteins present in CSFs. Each protein subfraction was enzyme digested and analyzed by tandem mass spectrometry and the resulting data evaluated using the Spectrum Mill software. Different subfractionation methods resulted in the identification of a grant total of 259 proteins in CSF from a patient with normal pressure hydrocephalus. The greatest number of protein, 240 in total, were identified after prefractionating the CSF proteins by immunodepletion and SDS-PAGE. Immuno-depletion combined with anion exchange fractionation resulted in 112 proteins and 74 proteins were found when only immunodepletion of the CSF samples was carried out. All methods used showed a significant increase in the number of identified proteins as compared with nondepleted and unfractionated CSF sample analysis, which yielded only 38 protein identifications. The present work establishes a platform for future studies aimed at a detailed comparative proteome analysis of CSFs from different groups of patients suffering from various psychiatric and neurological disorders.  相似文献   

6.
The continuing expansion of proteomic technology has been fueled by the potential for discovering novel biomarkers that may be used for the early detection of disease. It has been proposed that human cerebrospinal fluid (CSF), which surrounds and protects the brain and spinal cord from traumatic injury, may be a valuable target for the diagnosis of a variety of conditions such as Alzheimer's disease, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson's disease. The immense complexity of biofluids, however, still requires that considerable development be made in the analytical techniques used so that comprehensive coverage of the proteins present in such samples is achieved. Using a simple separation strategy the protein complement of human ventricular cerebrospinal fluid obtained from patients with hydrocephalus was evaluated. The study resulted in the identification of over 1500 unique proteins that were found within all nine CSF samples that were analyzed. Comparison with the HUPO serum proteome database demonstrated that human ventricular CSF contains a large array of proteins that may be unique to CSF. This analysis greatly increases our knowledge of the protein content of this clinically important biofluid.  相似文献   

7.
The introduction of acetylcholine esterase inhibitors for symptomatic treatment of Alzheimer's disease, and the promise of drugs that may delay disease progression, has created a great need for reliable diagnostic tools. However, current criteria for the clinical diagnosis of AD are largely based on the exclusion of other dementia disorders and disease markers are lacking. Since biochemical changes in the brain are reflected in the cerebrospinal fluid (CSF), the search for diagnostic tools for AD has been directed toward CSF markers. CSF markers for AD should reflect the central pathogenic processes of the disorder, i.e. the mismetabolism of β-amyloid (Aβ) and the hyperphosphorylation of tau. Several studies have found that the CSF level of Aβ42 is decreased, and the CSF levels of total tau and phosphorylated tau are increased in AD as compared with normal controls. Thus, the sensitivity of these changes in AD is high. But changes in CSF-Ab42 and CSF-tau have been found in other neurodegenerative disorders and therefore, the specificity seems to be moderately high. Other potential markers that may increase the clinical diagnostic accuracy include the CSF/serum albumin ratio (for identification of blood–brain barrier damage related to disturbances in the small intracerebral vessels), CSF-sulfatide (for identification of ongoing demyelination related to white matter changes and CSF-neurofilament light protein (NFL) [for identification of ongoing axonal (tau and NFL) degeneration]. Use of the summarized information from analyses of several CSF biochemical markers, from the clinical examination, and from brain imaging (SPECT, CT/MRI) may increase the accuracy of the clinical diagnosis.  相似文献   

8.
Integrated analysis of the cerebrospinal fluid peptidome and proteome   总被引:1,自引:0,他引:1  
Cerebrospinal fluid (CSF) is the only body fluid in direct contact with the brain and thus is a potential source of biomarkers. Furthermore, CSF serves as a medium of endocrine signaling and contains a multitude of regulatory peptides. A combined study of the peptidome and proteome of CSF or any other body fluid has not been reported previously. We report confident identification in CSF of 563 peptide products derived from 91 precursor proteins as well as a high confidence CSF proteome of 798 proteins. For the CSF peptidome, we use high accuracy mass spectrometry (MS) for MS and MS/MS modes, allowing unambiguous identification of neuropeptides. Combination of the peptidome and proteome data suggests that enzymatic processing of membrane proteins causes release of their extracellular parts into CSF. The CSF proteome has only partial overlap with the plasma proteome, thus it is produced locally rather than deriving from plasma. Our work offers insights into CSF composition and origin.  相似文献   

9.
So far only the detection of 14-3-3 proteins in cerebrospinal fluid (CSF) is included in the diagnostic criteria for sporadic Creutzfeldt-Jakob disease (sCJD). However, this assay cannot be used for screening because of the high rate of false positive results in sCJD, and often negative results in variant CJD. To facilitate the differential diagnosis of CJD, we applied 2-D differential gel-electrophoresis (2-D DIGE) as a quantitative proteomic screening system for CSF proteins. We compared 36 patients suffering from sCJD with 30 patients suffering from other neurodegenerative diseases. Sample preparation was optimized in consideration of the fact that CSF is composed of blood- and brain-derived proteins, and an improved 2-D DIGE protocol was established. Using this method in combination with protein identification by MALDI-TOF-MS, several known surrogate markers of sCJD like 14-3-3 protein, neuron-specific enolase, and lactate dehydrogenase were readily identified. Moreover, a not yet identified protein with an approximate molecular mass of 85 kDa was found as marker for sCJD with high diagnostic specificity and sensitivity. We conclude that our proteomic approach is useful to differentiate CJD from other neurodegenerative diseases and expect that CSF-optimized 2-D DIGE will find broad application in the search for other brain derived proteins in CSF.  相似文献   

10.
The monitoring of changes in the protein composition of the cerebrospinal fluid (CSF) can be used as a sensitive indicator of central nervous system (CNS) pathology, yet its systematic application to analysis of CNS neoplasia has been limited. There is a pressing need for both a better understanding of gliomagenesis and the development of reliable biomarkers of the disease. In this report, we used two proteomic techniques, two-dimensional gel electrophoresis (2-DE), and cleavable Isotope-Coded Affinity Tag (cICAT) to compare CSF proteomes to identify tumor- and grade-specific biomarkers in patients bearing brain tumors of differing histologies and grades. Retrospective analyses were performed on 60 samples derived from astrocytomas WHO grade II, III, and IV, schwannomas, metastastic brain tumors, inflammatory samples, and non-neoplastic controls. We identified 103 potential tumor-specific markers of which 20 were high-grade astrocytoma-specific. These investigations allowed us to identify a spectrum of signature proteins that could be used to distinguish CSF derived from control patients versus those with low- (AII) or high-grade (AIV) astrocytoma. These proteins may represent new diagnostic, prognostic, and disease follow-up markers when used alone or in combination. These candidate biomarkers may also have functional properties that play a critical role in the development and malignant progression of human astrocytomas, thus possibly representing novel therapeutic targets for this highly lethal disease.  相似文献   

11.
Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the CNS. Characterization of murine CSF proteomes can provide a valuable resource for studying CNS injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through nonterminal CSF extractions in C57Bl/6 mice and high‐resolution 2D‐LC MS/MS analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. We identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis. The data are available in the ProteomeXchange with identifier PXD000248 ( http://proteomecentral.proteomexchange.org/dataset/PXD000248 ).  相似文献   

12.
Cerebrospinal fluid (CSF) is a promising source of biomarkers in amyotrophic lateral sclerosis (ALS). Using the two-dimensional difference in gel electrophoresis (2-D-DIGE), we compared CSF samples from patients with ALS (n = 14) with those from normal controls (n = 14). Protein spots that showed significant differences between patients and controls were selected for further analysis by MALDI-TOF mass spectrometry. For validation of identified spots western blot analysis and ELISA was performed. We identified 2 proteins that were upregulated and 3 proteins that were down-regulated in CSF in ALS. Of these, two proteins (Zn-alpha-2-glycoprotein and ceruloplasmin precursor protein) have not been reported in CSF of patients with ALS so far. In contrast, several other proteins (transferrin, alpha-1-antitrypsin precursor and beta-2-microglobulin) seem to be unspecifically affected in different neurological diseases and may therefore be of limited value as disease-related biochemical markers in ALS. Further evaluation of the candidate proteins identified here is necessary.  相似文献   

13.

Background

Cerebrospinal fluid (CSF) is an important source of potential biomarkers that affect the brain. Biomarkers for neurodegenerative disorders are needed to assist in diagnosis, monitoring disease progression and evaluating efficacy of therapies. Recent studies have demonstrated the involvement of tyrosine kinases in neuronal cell death. Thus, neurodegeneration in the brain is related to altered tyrosine phosphorylation of proteins in the brain and identification of abnormally phosphorylated tyrosine peptides in CSF has the potential to ascertain candidate biomarkers for neurodegenerative disorders.

Methods

In this study, we used an antibody-based tyrosine phosphopeptide enrichment method coupled with high resolution Orbitrap Fusion Tribrid Lumos Fourier transform mass spectrometer to catalog tyrosine phosphorylated peptides from cerebrospinal fluid. The subset of identified tyrosine phosphorylated peptides was also validated using parallel reaction monitoring (PRM)-based targeted approach.

Results

To date, there are no published studies on global profiling of phosphotyrosine modifications of CSF proteins. We carried out phosphotyrosine profiling of CSF using an anti-phosphotyrosine antibody-based enrichment and analysis using high resolution Orbitrap Fusion Lumos mass spectrometer. We identified 111 phosphotyrosine peptides mapping to 66 proteins, which included 24 proteins which have not been identified in CSF previously. We then validated a set of 5 tyrosine phosphorylated peptides in an independent set of CSF samples from cognitively normal subjects, using a PRM-based targeted approach.

Conclusions

The findings from this deep phosphotyrosine profiling of CSF samples have the potential to identify novel disease-related phosphotyrosine-containing peptides in CSF.
  相似文献   

14.
The proteins of cerebrospinal fluid (CSF) and ventricular fluid have been analyzed by two-dimensional electrophoresis (2DE) and the patterns compared with autologous serum. Fourteen proteins were specifically identified by immunoprecipitation followed by 2DE, or by blotting 2DE gels to nitrocellulose and detection by peroxidase staining. Proteins in CSF and serum with high and low affinity for the ligands, protein A, Cibacron Blue, and concanavalin A, were also characterized by 2DE. The 2DE profiles of CSF and serum proteins were similar and indicated that a relatively nonselective filtration mechanism based on protein size is the major determinant for the overall pattern of CSF proteins. The classic CSF-enriched or CSF-specific proteins, beta-trace, prealbumin, transferrin, and beta-2-microglobulin, were identified according to 2DE coordinates. Charge differences between CSF and serum for transferrin and prealbumin were identified. In addition, a large number of additional CSF-enriched or CSF-specific proteins of high, intermediate, and low molecular weight, all predominantly anodic in mobility, were identified. Three acidic protein complexes, heterogeneous in charge and molecular weight, were characterized as constituents of normal CSF, and two of these are increased in patients with inflammatory diseases of the CNS. All three proteins and several other proteins unique to CSF bound to Cibacron Blue-Sepharose. The use of 2DE in conjunction with affinity chromatography and sensitive protein stains enlarged the number of proteins previously identified as unique to CSF. By a modified 2DE and silver staining procedure, most of these proteins were visible without prior concentration of CSF.  相似文献   

15.
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.  相似文献   

16.
Leptomeningeal metastasis (LM) is a devastating complication occurring in 5% of breast cancer patients. However, the current 'gold standard' of diagnosis, namely microscopic examination of the cerebrospinal fluid (CSF), is false-negative in 25% of patients at the first lumbar puncture. In a previous study, we analyzed a set of 151 CSF samples (tryptic digests) by MALDI-TOF and detected peptide masses that were differentially expressed in breast cancer patients with LM. In the present study, we obtain for a limited number of samples exact masses for these peptides by MALDI-FTICR MS measurements. Identification of these peptides was performed by electrospray FTICR MS after separation by nano-scale LC. The database results were confirmed by targeted high mass accuracy measurements of the fragment ions in the FTICR cell. The combination of automated high-throughput MALDI-TOF measurements and analysis by FTICR MS leads to the identification of 17 peptides corresponding to 9 proteins. These include proteins that are operative in host-disease interaction, inflammation and immune defense (serotransferrin, alpha 1-antichymotrypsin, hemopexin, haptoglobin and transthyretin). Several of these proteins have been mentioned in the literature in relation to cancer. The identified proteins alpha1-antichymotrypsin and apolipoprotein E have been described in relation to Alzheimer's disease and brain cancer.  相似文献   

17.
Human cerebrospinal fluid (CSF) is an important source for studying protein biomarkers of age-related neurodegenerative diseases. Before characterizing biomarkers unique to each disease, it is necessary to categorize CSF proteins systematically and extensively. However, the enormous complexity, great dynamic range of protein concentrations, and tremendous protein heterogeneity due to post-translational modification of CSF create significant challenges to the existing proteomics technologies for an in-depth, nonbiased profiling of the human CSF proteome. To circumvent these difficulties, in the last few years, we have utilized several different separation methodologies and mass spectrometric platforms that greatly enhanced the identification coverage and the depth of protein profiling of CSF to characterize CSF proteome. In total, 2594 proteins were identified in well-characterized pooled human CSF samples using stringent proteomics criteria. This report summarizes our efforts to comprehensively characterize the human CSF proteome to date.  相似文献   

18.
Cerebrospinal fluid (CSF) from twenty three patients with non specific mental retardation and fourteen age matched normal samples was subjected for qualitative analysis of protein profiles by two-dimensional gel electrophoresis (2-DE) and the proteins were visualised by ultra sensitive silver staining. Two proteins designated as mental retardation associated proteins (MRAP-I and MRAP-II) were identified in six male patients out of twenty three patients CSF samples. MRAP-I had an isoelectric point of 7.4 with a relative molecular weight 16.5 kDa, while MRAP-II had an iso-electric point of 7.2 with a relative molecular weight 16.8 kDa. The two proteins are presumed to be originated from brain, as they could not be traced in the serum of patients, nor due to proteolytic degradation. Despite unknown origin and identity, their presence in the CSF of a specific group of mentally retarded male patients suggest their possible clinical utility and to define protein alterations in mental retardation.  相似文献   

19.
Proteomics analysis of prefractionated human lumbar cerebrospinal fluid   总被引:3,自引:0,他引:3  
Yuan X  Desiderio DM 《Proteomics》2005,5(2):541-550
Cerebrospinal fluid (CSF) is produced by the chorioid plexus in the ventricles. It surrounds the brain and bone marrow, and reflects several different disorders of the central nervous system (CNS). Proteomics has been used to analyze CSF in order to discover disease-associated proteins and to elucidate the basic molecular mechanisms that either cause, or result from, CNS disorders. However, some disease-associated proteins are of low-abundance and are difficult to detect. A low total-protein concentration, a high amount of albumin and immunoglobins, and a wide dynamic range (several orders of magnitude) of protein concentration cause several difficulties in the identification of low-abundance CSF proteins. In this study, advantage was taken of the range of different hydrophobic properties of CSF proteins, and a reversed-phase solid-phase extraction (SPE) cartridge was used to prefractionate human lumbar CSF proteins into three separate fractions prior to two-dimensional gel electrophoresis resolution of the proteome. A portion of the high-abundance CSF proteins were removed from two (eluted with 35% and 50% acetonitrile) of the three fractions. Some trace CSF proteins were preferentially enriched in the two fractions, and many proteins were detected in the two-dimensional (2-D) gels of the two fractions. Among the novel proteins identified, sixty-two protein spots that represent forty-two proteins were characterized. Most of the proteins have not been annotated in any previous 2-D map of human CSF, and several have been implicated in CNS diseases. The prefractionation of CSF proteins with SPE, followed by proteomics analysis, provides a new method to explore low-abundance, disease-specific CSF proteins.  相似文献   

20.
《PloS one》2015,10(8)
Disease modifying treatments for Alzheimer’s disease (AD) constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle. Cerebrospinal fluid (CSF) biochemical markers such as total tau, p-tau and Ab42 are well established markers of AD; however, global quantitative biochemical changes in CSF in AD disease progression remain largely uncharacterized. Here we applied a high resolution open discovery platform, dMS, to profile a cross-sectional cohort of lumbar CSF from post-mortem diagnosed AD patients versus those from non-AD/non-demented (control) patients. Multiple markers were identified to be statistically significant in the cohort tested. We selected two markers SME-1 (p<0.0001) and SME-2 (p = 0.0004) for evaluation in a second independent longitudinal cohort of human CSF from post-mortem diagnosed AD patients and age-matched and case-matched control patients. In cohort-2, SME-1, identified as neuronal secretory protein VGF, and SME-2, identified as neuronal pentraxin receptor-1 (NPTXR), in AD were 21% (p = 0.039) and 17% (p = 0.026) lower, at baseline, respectively, than in controls. Linear mixed model analysis in the longitudinal cohort estimate a decrease in the levels of VGF and NPTXR at the rate of 10.9% and 6.9% per year in the AD patients, whereas both markers increased in controls. Because these markers are detected by mass spectrometry without the need for antibody reagents, targeted MS based assays provide a clear translation path for evaluating selected AD disease-progression markers with high analytical precision in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号