首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
一种土壤中大豆疫霉菌分离新方法   总被引:14,自引:0,他引:14  
由于腐霉菌的干扰,土壤中大豆疫霉菌的分离十分困难。利用大豆疫霉菌的致病性和大豆对病原菌的选择作用排除腐霉菌,我们建立了一种简单、有效的土壤中大豆疫霉菌的分离方法。该方法用不含抗大豆疫霉根腐病基因的大豆叶碟诱钓大豆疫霉菌的游动孢子,将诱钓叶碟直接接种不含抗大豆疫霉菌基因的大豆植株,再对病株进行选择性或非选择性分离获得大豆疫霉菌。此方法能十分有效地排除腐霉菌干扰和细菌的污染,直接获得纯化菌株。应用该方法我们在以前未报道有大豆疫霉根腐病发生的山东、河南、安徽、江苏和浙江分离到大豆疫霉菌。  相似文献   

2.
抗大豆疫霉根腐病野生大豆资源的初步筛选   总被引:9,自引:0,他引:9  
由大豆疫霉菌引起的大豆疫霉根腐病是严重影响大豆生产的毁灭性病害之一.防治该病唯一经济、有效和环境安全的方法是利用抗病品种.本研究对野生大豆资源进行抗大豆疫霉根腐病初步筛选,以期探讨野生大豆的抗性水平、分布和获得抗性野生大豆资源.通过苗期接种大豆疫霉菌对412份野生大豆资源进行抗病性鉴定,有13.4%的资源抗大豆疫霉根腐病,15.3%的资源表现为中间反应类型.对野生大豆资源的来源分析表明,抗大豆疫霉根腐病野生大豆资源在我国分布广泛,其中安徽省野生大豆资源抗性最丰富.  相似文献   

3.
大豆疫霉根腐病抗源筛选   总被引:18,自引:2,他引:18  
由大豆疫霉菌引起的大豆疫霉根腐病是大豆生产的重要病害,该病已在我国大豆主要产区发生,并在局部地区造成较大产量损失。利用抗病品种是防治大豆疫霉根腐病最有效的方法。本研究目的是筛选大豆疫霉根腐病抗源,为病害防治和抗病品种的选育提供参考。用下胚轴创伤接种方法对120个栽培大豆品种(系)进行接种,鉴定其对10个具有不同毒力大豆疫霉菌菌株的抗性。有110个品种(系)分别抗1~10个大豆疫霉菌菌株,其中以河南大豆品种(系)对疫霉菌的抗性最丰富,安徽、湖北和山西大豆品种(系)也具有抗性多样性。120个大豆品种(系)对10个大豆疫霉菌菌株共产生57个反应型,有4个抗性反应型分别与单个抗病基因的反应型一致,有7个抗性反应型与2个已知基因组合的反应型相同,其他抗性反应型为新的类型。一些大豆品种(系)中可能存在有效的抗大豆疫霉根腐病新基因。  相似文献   

4.
大豆品种早熟18抗疫霉根腐病基因的SSR分子标记   总被引:3,自引:0,他引:3  
大豆品种早熟18是抗疫霉根腐病的有效抗源。本研究鉴定和分子标记早熟18的抗疫霉根腐病基因,以期为该品种的有效利用及分子辅助育种奠定基础。以感病大豆品种Williams与早熟18杂交建立分离群体。抗性遗传分析表明,早熟18对大豆疫霉菌抗性由1个显性单基因控制,该基因被定名为RpsZS18。SSR标记连锁分析表明,RpsZS18位于大豆分子遗传连锁群D1b上的SSR标记Sat_069和Sat_183之间,与这两个标记的遗传距离分别为10.0cM和8.3cM。RpsZS18是D1b连锁群上鉴定的第一个抗疫霉根腐病基因。  相似文献   

5.
采用叶碟诱捕法从2007年进口的美国大豆携带的土壤和2006年从黑龙江感病大豆田采集的土壤中分离出2株疫霉菌菌株,并对病原菌进行了形态特征、致病性、分子检测。结果表明:形态观察为疫霉属真菌;接种大豆后出现典型的大豆疫病症状;采用大豆疫霉的特异性引物PCR检测,2个菌株均能扩增出分子量为330 bp的特异性条带。结合形态、致病性测定和分子检测,2株病菌鉴定为大豆疫霉菌(Phytophthora sojaeKauf-mann et Gerdemann)。  相似文献   

6.
范黎 《微生物学通报》2012,39(10):1532-1532
大豆疫霉菌Phytophthora sojae可引起大豆疫霉根腐病,是影响大豆生产的毁灭性病害。全球每年由于大豆疫霉根腐病导致的直接经济损失高达十几亿美元,该菌流行于我国东北大豆产区和福建等地并引起严重病害[1]。  相似文献   

7.
土壤中辣椒疫霉分离方法的研究与量化测定   总被引:1,自引:0,他引:1  
从杭州、西安、广州及武汉等辣椒病田分别采集土样 ,室内晾干研碎后 ,用选择性培养基 ,采用土壤稀释平板法和组织诱饵法分离辣椒疫霉 (PhytophthoracapsiciLeonian) ,并对土壤中辣椒疫霉的密度进行量化处理。结果表明 ,利用选择性燕麦培养基 ,采用土壤稀释平板法可分离获得大量的辣椒疫霉菌株 ,而且辣椒连作田的辣椒疫霉菌密度高于轮作田。组织诱饵法试验结果表明 ,辣椒叶片诱集效果最好 ,其次是辣椒果实。  相似文献   

8.
用下胚轴伤口接种方法接种鉴定黑龙江省60个栽培大豆品种和育成品系对5个具有不同毒力大豆疫霉菌菌株41-4、PMCl、USAR4、PSZJ6和USAR17的抗性.有50个品种(系)抗1个或1个以上茵株或表现中间类型,其中有5个、8个、16个和21个品种(系)分别对4个、3个、2个和1个菌株表现抗性或中间类型.60个品种(系)对5个菌株共产生12种反应模式,其中呈RRSSR反应类型的品种(系)可能含有Rpslα或Rpslc基因,品系农大3861可能含有Rps3c基因,呈SSSSS反应模式的品种(系)可能含有Rps7基因,或不含抗病基因;其它9种反应模式与含有已知单基因品种或单基因组合的反应模式不同,可能具有未知抗病基因.该研究结果表明,黑龙江省具有较丰富的抗大豆疫霉根腐病大豆品种(系),大部分品种(系)的抗性是有效的,可合理地用于大豆生产和抗疫霉根腐病育种.  相似文献   

9.
[背景]近年来,随着猕猴桃种植面积的不断扩大,病害的频繁发生已逐渐影响猕猴桃的产量和品质。恶疫霉(Phytophthora cactorum)、樟疫霉(P.cinnamomi)和雪松疫霉(P.lateralis)是一类可以引起猕猴桃根腐病的致病疫霉菌。[目的]建立并优化可以同时检测3种致病疫霉的多重实时定量检测技术,并调查猕猴桃主要产区的致病菌分布情况。[方法]基于Ypt1 (ras-related protein gene)基因设计恶疫霉、樟疫霉和雪松疫霉的特异性TaqMan探针和引物,建立并优化多重实时荧光定量PCR检测体系。利用近缘种检验检测体系特异性并进行灵敏度测试,应用该检测体系分析猕猴桃主要产区根际土壤中3种致病疫霉的Yt1基因含量。[结果]供测试的11个恶疫霉近缘种、11个樟疫霉近缘种、13个雪松疫霉近缘种及非目标菌种DNA样品中均无荧光信号,反应结果为阴性,而在恶疫霉、樟疫霉和雪松疫霉DNA样品中分别检测出HEX、FAM和ROX荧光信号,反应结果为阳性。三种疫霉的检测灵敏度均达到100fg。此外,通过对猕猴桃主产区陕西省周至县和眉县果园共166份土壤样品的检测发现,恶疫霉的分布最广泛且Ypt1基因含量最高,樟疫霉和雪松疫霉则相对较少。[结论]建立的猕猴桃根腐病致病疫霉多重实时定量检测体系特异性强、灵敏度高,适合于恶疫霉、樟疫霉和雪松疫霉的检测及定量分析。该技术可为猕猴桃疫霉病害的早期诊断、监测及预防提供指导。  相似文献   

10.
利用大豆疫霉菌(Phytophthoramegaspermaf.sp.glycinea)的菌丝可溶性蛋白,游动孢子悬浮液和培养液的浓缩物质作免疫原,获得三种抗血清。免疫双扩散测效价表明以菌丝可溶性蛋白作免疫原获得的抗血清效价最高,利用这种抗血清能够检测到4.4ng/ml的菌丝可溶性蛋白抗原,特异性试验表明大豆疫霉菌的抗血清与其它属真菌无交叉反应,但与测试的疫霉属真菌具有不同程度的交叉反应,由于疫霉属真菌只有大雄疫霉大豆专化型侵染大豆,故可用于对大豆疫霉菌的检测、诊断。  相似文献   

11.
Soybean phytophthora resistance gene Rps8 maps closely to the Rps3 region   总被引:9,自引:0,他引:9  
Root and stem rot is one of the major diseases of soybean. It is caused by the oomycete pathogen Phytophthora sojae. A series of resistance genes (Rps) have been providing soybean with reasonable protection against this pathogen. Among these genes, Rps8, which confers resistance to most P. sojae isolates, recently has been mapped. However, the most closely linked molecular marker was mapped at about 10 cM from Rps8. In this investigation, we attempted to develop a high-density genetic map of the Rps8 region and identify closely linked SSR markers for marker-assisted selection of this invaluable gene. Bulk segregant analysis was conducted for the identification of SSR markers that are tightly linked to Rps8. Polymorphic SSR markers selected from the Rps8 region failed to show cosegregation with Phytophthora resistance. Subsequently, bulk segregant analysis of the whole soybean genome and mapping experiments revealed that the Rps8 gene maps closely to the disease resistance gene-rich Rps3 region.  相似文献   

12.
13.
14.
15.
We have used map-based approaches to clone a locus containing two genes, Avr1b-1 and Avr1b-2, required for avirulence of the oomycete pathogen Phytophthora sojae (Kaufmann & Gerdemann) on soybean plants carrying resistance gene Rps1b. Avr1b-1 was localized to a single 60-kb bacterial artificial chromosome (BAC) clone by fine-structure genetic mapping. Avr1b-1 was localized within the 60-kb region by identification of an mRNA that is expressed in a race-specific and infection-specific manner and that encodes a small secreted protein. When the Avr1b-1 protein was synthesized in the yeast Pichia pastoris and the secreted protein infiltrated into soybean leaves, it triggered a hypersensitive response specifically in host plants carrying the Rps1b resistance gene. This response eventually spread to the entire inoculated plant. In some isolates of P. sojae virulent on Rps1b-containing cultivars, such as P7081 (race 25) and P7076 (race 19), the Avr1b-1 gene had numerous substitution mutations indicative of strong divergent selection. In other isolates, such as P6497 (race 2) and P9073 (race 25), there were no substitutions in Avr1b-1, but Avr1b-1 mRNA did not accumulate. Genetic complementation experiments with P6497 revealed the presence of a second gene, Avr1b-2, required for the accumulation of Avr1b-1 mRNA. Avr1b-2 was genetically mapped to the same BAC contig as Avr1b-1, using a cross between P7064 (race 7) and P6497. The Avr1k gene, required for avirulence on soybean cultivars containing Rps1k, was mapped to the same interval as Avr1b-1.  相似文献   

16.
Sandhu D  Gao H  Cianzio S  Bhattacharyya MK 《Genetics》2004,168(4):2157-2167
Resistance of soybean against the oomycete pathogen Phytophthora sojae is conferred by a series of Rps genes. We have characterized a disease resistance gene-like sequence NBSRps4/6 that was introgressed into soybean lines along with Rps4 or Rps6. High-resolution genetic mapping established that NBSRps4/6 cosegregates with Rps4. Two mutants, M1 and M2, showing rearrangements in the NBSRps4/6 region were identified from analyses of 82 F(1)'s and 201 selfed HARO4272 plants containing Rps4. Fingerprints of these mutants are identical to those of HARO4272 for 176 SSR markers representing the whole genome except the NBSRps4/6 region. Both mutants showed a gain of race specificities, distinct from the one encoded by Rps4. To investigate the possible mechanism of gain of Phytophthora resistance in M1, the novel race specificity was mapped. Surprisingly, the gene encoding this resistance mapped to the Rps3 region, indicating that this gene could be either allelic or linked to Rps3. Recombinant analyses have shown that deletion of NBSRps4/6 in M1 is associated with the loss of Rps4 function. The NBSRps4/6 sequence is highly transcribed in etiolated hypocotyls expressing the Phytophthora resistance. It is most likely that a copy of the NBSRps4/6 sequence is the Rps4 gene. Possible mechanisms of the deletion in the NBSRps4/6 region and introgression of two unlinked Rps genes into Harosoy are discussed.  相似文献   

17.
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

18.
19.
用SSR标记分析抗疫霉根腐病大豆品种(系)的遗传多样性   总被引:2,自引:0,他引:2  
利用50对SSR引物对抗疫霉根腐病大豆品种(系)进行遗传多样性分析。在166份品种(系)中,50个SSR座位共产生265个等位变异,平均每个座位5.3个。采用NTSYS-pc2.10计算品种(系)间遗传相似系数,平均相似系数为0.3124,表明抗疫霉根腐病大豆品种(系)间的遗传差异较大。用UPMGA进行聚类分析,166个品种(系)在相似系数为0.33时被聚为6类,地理来源相同的品种(系)大多聚类在一起。一些具有相同或相近抗病反应型的品种(系)被聚类在同一个类群中,表明这些抗病品种(系)的遗传关系较近,应有选择地利用。W illiam s和C lark抗疫霉根腐病近等基因系构成明显不同于中国大豆的基因源,可以用于拓宽我国大豆品种的遗传基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号