首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
The amino acid sequence of the rat 40S ribosomal subunit protein S25 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein S25 has 125 amino acids and has a molecular weight of 13,733. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 19 to 22 copies of the S25 gene. The mRNA for the protein is about 550 nucleotides in length. Rat S25 is homologous to ribosomal proteins from other eukaryotes (human and yeast).  相似文献   

2.
MUC8 gene expression is overexpressed in nasal polyp epithelium and is also increased by treatment with inflammatory mediators in nasal epithelial cells. These data suggest that MUC8 may be one of important mucin genes expressed in human airway. However, the mechanisms of various inflammatory mediator-induced MUC8 gene expression in normal nasal epithelial cells remain unclear. We examined the mechanism by which prostaglandin E(2) (PGE2), an arachidonic acid metabolite, increases MUC8 gene expression levels. Here, we show that ERK mitogen-activated protein kinase is essential for PGE2-induced MUC8 gene expression in normal human nasal epithelial cells and that p90 ribosomal S 6 protein kinase 1 (RSK1) mediates the PGE2-induced phosphorylation of cAMP-response element binding protein. Our results also indicate that cAMP-response element at the -803 region of the MUC8 promoter is an important site of PGE2-induced MUC8 gene expression. In conclusion, this study gives insights into the molecular mechanism of PGE2-induced MUC8 gene expression in human airway epithelial cells.  相似文献   

3.
The sequence of a gene for ribosomal protein L4 of Saccharomyces cerevisiae has been determined. Unlike most ribosomal protein genes of S. cerevisiae this gene has no intron. The single open reading frame predicts that L4 is highly homologous to mammalian ribosomal protein L7a. There appear to be two genes for L4, both of which are active.  相似文献   

4.
The ribosomal L12 protein gene of Sulfolobus solfataricus (SsoL12) has been subcloned and overexpressed in Escherichia coli. Five protein L12 mutants were designed: two NH2-terminal and two COOH-terminal truncated mutants and one mutant lacking the highly charged part of the COOH-terminal region. The mutant protein genes were overexpressed in E. coli and the products purified. The amino acid composition was verified and the NH2 terminally truncated mutants were subjected to Edman degradation. The SsoL12 protein was selectively removed from entire S. solfataricus ribosomes by an ethanol wash. The remaining ribosomal core particles showed a substantial decrease in the in vitro translational activity. S. solfataricus L12 protein overexpressed in E. coli (SsoL12e) was incorporated into these ribosomal cores and restored their translational activity. Mutants lacking any part of the COOH-terminal region could be incorporated into these cores, as proven by two-dimensional polyacrylamide gels of the reconstituted particles. Mutant SsoL12 MC2 (residue 1-70) was sufficient for dimerization and incorporation into ribosomes. In contrast to the COOH terminally truncated mutants, L12 proteins lacking the 12 highly conserved NH2-terminal residues or the entire NH2-terminal region (44 amino acids) are unable to bind to ribosomes, suggesting that the SsoL12 protein binds with its NH2-terminal portion to the ribosome. None of the mutants could significantly increase the translational activity of the core particles suggesting that every deleted part of the protein was needed directly or indirectly for translational activity. Our results suggest that the COOH terminally truncated mutants were bound to ribosomes but not functional for translation. Cores preincubated with these COOH terminally truncated mutants regained activity when a second incubation with the entire overexpressed SsoL12e protein followed. This finding suggests that archaebacterial L12 proteins are freely exchanged on the ribosome.  相似文献   

5.
Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but a rapidly degradable form of eIF6 fusion protein was synthesized from a repressible GAL10 promoter. Depletion of eIF6 from yeast cells resulted in a selective reduction in the level of 60S ribosomal subunits, causing a stoichiometric imbalance in 60S-to-40S subunit ratio and inhibition of the rate of in vivo protein synthesis. Further analysis indicated that eIF6 is not required for the stability of 60S ribosomal subunits. Rather, eIF6-depleted cells showed defective pre-rRNA processing, resulting in accumulation of 35S pre-rRNA precursor, formation of a 23S aberrant pre-rRNA, decreased 20S pre-rRNA levels, and accumulation of 27SB pre-rRNA. The defect in the processing of 27S pre-rRNA resulted in the reduced formation of mature 25S and 5.8S rRNAs relative to 18S rRNA, which may account for the selective deficit of 60S ribosomal subunits in these cells. Cell fractionation as well as indirect immunofluorescence studies showed that c-Myc or hemagglutinin epitope-tagged eIF6 was distributed throughout the cytoplasm and the nuclei of yeast cells.  相似文献   

6.
Eukaryotic ribosome maturation depends on a set of well ordered processing steps. Here we describe the functional characterization of yeast Nog2p (Ynr053cp), a highly conserved nuclear protein. Nog2p contains a putative GTP-binding site, which is essential in vivo. Kinetic and steady-state measurements of the levels of pre-rRNAs in Nog2p-depleted cells showed a defect in 5.8S and 25S maturation and a concomitant increase in the levels of both 27SB(S) and 7S(S) precursors. We found Nog2p physically associated with large pre-60S complexes highly enriched in the 27SB and 7S rRNA precursors. These complexes contained, besides a subset of ribosomal proteins, at least two additional factors, Nog1p, another putative GTP-binding protein, and Rlp24p (Ylr009wp), which belongs to the Rpl24e family of archaeal and eukaryotic ribosomal proteins. In the absence of Nog2p, the pre-60S ribosomal complexes left the nucleolus, but were retained in the nucleoplasm. These results suggest that transient, possibly GTP-dependent association of Nog2p with the pre-ribosomes might trigger late rRNA maturation steps in ribosomal large subunit biogenesis.  相似文献   

7.
The gene for the ribosomal L12 protein from the archaebacterium Methanococcus vannielii was cloned into the expression vector pKK223-3. The protein was overexpressed and remained stable in Escherichia coli XL1 cells. Purification yielded a protein with the same amino acid composition and sequence as in Methanococcus but it was acetylated at the N terminus as in the case with the homologous protein of E. coli. The in vivo incorporation of the overexpressed protein into the E. coli ribosomes was not observed. The overexpressed M. vannielii protein MvaL12e was incorporated into halobacterial ribosomes, thereby displacing the corresponding halobacterial L12 protein. Intact 70 S ribosomes were reconstituted from halobacterial 50 S subunits carrying the MvaL12e protein. These ribosomes were as active as native halobacterial ribosomes in a poly(U) assay. On the other hand, our attempts to incorporate L12 proteins from Bacillus stearothermophilus and E. coli into halobacterial ribosomes were not successful. These results support the conclusion which is based on primary sequence and predicted secondary structure comparisons that there exist two distinct L12 protein families, namely the eubacterial L12 protein family and the eukaryotic/archaebacterial L12 protein family.  相似文献   

8.
We have cloned and sequenced the ribosomal protein S13 gene from the Chinese hamster fibroblast HA-1 cells. The predicted protein encoded by this gene is identical to the human ribosomal protein S13, except for one amino acid substitution at residue 29, which is an alanine in the hamster protein and a threonine in that of humans. The physical organization of the six exons and five introns in the hamster S13 gene is also identical to that found in the human and Xenopus genes with respect to the amino acid codes, even though there are small differences in the lengths of the introns. The striking feature is that unlike its human and Xenopus counterparts, which encode two U14 snoRNAs in two separate introns, the hamster S13 gene encodes no U14 snoRNA. Instead, the hamster gene has a pseudo-U14 coding sequence in its third intron. Our data support the idea that the single copy of the hsc70/U14 gene, which we had previously characterized, is the only source for the production of both U14 snoRNA and hsc70 mRNA species in hamster HA-1 cells.  相似文献   

9.
Ribosomal protein S1 has been identified in Thermus thermophilus ribosomes. The gene of ribosomal protein S1 from Thermus thermophilus has been cloned and overexpressed in Escherichia coli. A procedure for purification of the protein has been developed.  相似文献   

10.
11.
12.
The Escherichia coli RrmJ (FtsJ) heat shock protein functions as an rRNA methyltransferase that modifies position U2552 of 23S rRNA in intact 50S ribosomal subunits. An in-frame deletion of the rrmJ (ftsJ) gene leads to severe growth disadvantages under all temperatures tested and causes significant accumulation of ribosomal subunits at the expense of functional 70S ribosomes. To investigate whether overexpression of other E. coli genes can restore the severe growth defect observed in rrmJ null mutants, we constructed an overexpression library from the rrmJ deletion strain and cloned and identified the E. coli genes that were capable of rescuing the rrmJ mutant phenotype. Our intention was to identify other methylases whose specificities overlapped enough with that of RrmJ to allow complementation when overexpressed. To our great surprise, no methylases were found by this method; rather, two small GTPases, Obg (YhbZ) and EngA, when overexpressed in the rrmJ deletion strains, were found to restore the otherwise severely impaired ribosome assembly process and/or stability of 70S ribosomes. 50S ribosomal subunits prepared from these overexpressing strains were shown to still serve as in vitro substrates for purified RrmJ, indicating that the 23S rRNA likely was still lacking the highly conserved Um2552 modification. The apparent lack of this modification, however, no longer caused ribosome defects or a growth disadvantage. Massive overexpression of another related small GTPase, Era, failed to rescue the growth defects of an rrmJ strain. These findings suggest a hitherto unexpected connection between rRNA methylation and GTPase function, specifically that of the two small GTPases Obg and EngA.  相似文献   

13.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

14.
Patterson A  Karsi A  Feng J  Liu Z 《Gene》2003,305(2):151-160
Ribosomal protein genes have become widely used as markers for phylogenetic studies and comparative genomics, but they have not been available in fish. We have cloned and sequenced a complete set of all 47 60S ribosomal protein cDNAs from channel catfish (Ictalurus punctatus), of which 43 included the complete protein encoding regions. Most ribosomal protein mRNAs in channel catfish are highly similar to their mammalian counterparts. However, L4, L14, and L29 are significantly shorter in channel catfish than in mammals due to deletions in the 3' end of the gene. Two distantly related L5 cDNAs, L5a and L5b, were found in channel catfish. L5a is more similar to L5 in other vertebrates, while L5b showed significant levels of divergence, suggesting independent evolution of the two L5-encoding genes. The 47 ribosomal protein genes are generally highly expressed and together account for 11-14% of overall gene expression, depending on the tissues. Expression levels were highly variable both within a single tissue among different ribosomal protein genes, and among tissues with regard to a single ribosomal protein gene. Strong tissue preference expression was also observed for some ribosomal proteins. This set of ribosomal protein gene sequences represents one of the most complete sets from any single organism and will aid in fish phylogenetic and comparative genomic studies.  相似文献   

15.
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. The Saccharomyces cerevisiae gene that encodes the 245-amino-acid eIF6 (calculated Mr 25,550), designated TIF6, has been cloned and expressed in Escherichia coli. The purified recombinant protein prevents association between 40S and 60S ribosomal subunits to form 80S ribosomes. TIF6 is a single-copy gene that maps on chromosome XVI and is essential for cell growth. eIF6 expressed in yeast cells associates with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Depletion of eIF6 from yeast cells resulted in a decrease in the rate of protein synthesis, accumulation of half-mer polyribosomes, reduced levels of 60S ribosomal subunits resulting in the stoichiometric imbalance in the 40S/60S subunit ratio, and ultimately cessation of cell growth. Furthermore, lysates of yeast cells depleted of eIF6 remained active in translation of mRNAs in vitro. These results indicate that eIF6 does not act as a true translation initiation factor. Rather, the protein may be involved in the biogenesis and/or stability of 60S ribosomal subunits.  相似文献   

16.
Structure of a ribosomal protein gene in Mucor racemosus.   总被引:2,自引:1,他引:1       下载免费PDF全文
L Sosa  W A Fonzi    P S Sypherd 《Nucleic acids research》1989,17(22):9319-9331
  相似文献   

17.
The expression of ribosomal protein (rp) genes is regulated at multiple levels. In yeast, two genes are autoregulated by feedback effects of the protein on pre-mRNA splicing. Here, we have investigated whether similar mechanisms occur in eukaryotes with more complicated and highly regulated splicing patterns. Comparisons of the sequences of ribosomal protein S13 gene (RPS13) among mammals and birds revealed that intron 1 is more conserved than the other introns. Transfection of HEK 293 cells with a minigene-expressing ribosomal protein S13 showed that the presence of intron 1 reduced expression by a factor of four. Ribosomal protein S13 was found to inhibit excision of intron 1 from rpS13 pre-mRNA fragment in vitro. This protein was shown to be able to specifically bind the fragment and to confer protection against ribonuclease cleavage at sequences near the 5′ and 3′ splice sites. The results suggest that overproduction of rpS13 in mammalian cells interferes with splicing of its own pre-mRNA by a feedback mechanism.  相似文献   

18.
A specific complex of 5 S rRNA and several ribosomal proteins is an integral part of ribosomes in all living organisms. Here we studied the importance of Escherichia coli genes rplE, rplR and rplY, encoding 5 S rRNA-binding ribosomal proteins L5, L18 and L25, respectively, for cell growth, viability and translation. Using recombineering to create gene replacements in the E. coli chromosome, it was shown that rplE and rplR are essential for cell viability, whereas cells deleted for rplY are viable, but grow noticeably slower than the parental strain. The slow growth of these L25-defective cells can be stimulated by a plasmid expressing the rplY gene and also by a plasmid bearing the gene for homologous to L25 general stress protein CTC from Bacillus subtilis. The rplY mutant ribosomes are physically normal and contain all ribosomal proteins except L25. The ribosomes from L25-defective and parental cells translate in vitro at the same rate either poly(U) or natural mRNA. The difference observed was that the mutant ribosomes synthesized less natural polypeptide, compared to wild-type ribosomes both in vivo and in vitro. We speculate that the defect is at the ribosome recycling step.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号