首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of a retroviral genome depends upon integration of the viral DNA into a chromosome of the host cell. The integration reaction is mediated by integrase, a viral enzyme. Human immunodeficiency virus type 1 integrase was expressed in Escherichia coli and purified to near homogeneity. Optimum conditions for the integration and 3'-end-processing activities of integrase were characterized by using an in vitro assay with short, double-stranded oligonucleotide substrates. Mutants containing amino acid substitutions within the HHCC region, defined by phylogenetically conserved pairs of histidine and cysteine residues near the N terminus, were constructed and characterized by using three assays: 3'-end processing, integration, and the reverse of the integration reaction (or disintegration). Mutations in the conserved histidine and cysteine residues abolished both integration and processing activities. Weak activity in both assays was retained by two other mutants containing substitutions for less highly conserved amino acids in this region. All mutants retained activity in the disintegration assay, implying that the active site for DNA cleavage-ligation is not located in this domain and that the HHCC region is not the sole DNA-binding domain in the protein. However, the preferential impairment of processing and integration rather than disintegration by mutations in the HHCC region is consistent with a role for this domain in recognizing features of the viral DNA. This hypothesis is supported by the results of disintegration assays performed with altered substrates. The results support a model involving separate viral and target DNA-binding sites on integrase.  相似文献   

2.
The protein-DNA and protein-protein interactions important for function of the integrase (IN) protein of Moloney murine leukemia virus (M-MuLV) were investigated by using a coordinated-disintegration assay. A panel of M-MuLV IN mutants and substrate alterations highlighted distinctions between the intermolecular and intramolecular reactions of coordinated disintegration. Mispairing of the crossbone single-strand region and altered long terminal repeat (LTR) positioning affected the intermolecular, but not the intramolecular, reactions of coordinated disintegration. Partial components of the crossbone substrate were coordinated by M-MuLV IN, indicating a reliance on both LTR and target DNA determinants for substrate assembly. The intramolecular reaction was dependent on the presence of either the HHCC domain or a crossbone LTR 5' single-stranded tail. An M-MuLV IN mutant without the HHCC domain (Ndelta105) catalyzed reduced levels of double disintegration but not single disintegration. A separately purified HHCC domain protein (Cdelta232) stimulated double disintegration mediated by Ndelta105, suggesting a role of the N-terminal HHCC domain in stable IN-IN and IN-DNA interactions. Significantly, crossbone substrates lacking the LTR 5' tails were not recognized by the fingerless Ndelta105 protein. Collectively, these data suggest similar roles of the HHCC domain and 5' LTR tail in substrate recognition and modulation of IN activity.  相似文献   

3.
4.
5.
S A Chow  P O Brown 《Journal of virology》1994,68(12):7869-7878
Integration of retroviral DNA involves a coordinated joining of the two ends of a viral DNA molecule into precisely spaced sites on target DNA. In this study, we designed an assay that requires two separate oligonucleotides to be brought together via interactions between integrase promoters to form a "crossbones" substrate that mimics the integration intermediate. The crossbones substrate contains two viral DNA ends, each joined to one strand of target DNA and separated by a defined length of target DNA. We showed that purified integrases of human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV) could mediate a concerted strand cleavage-ligation between the two half-substrates at one or both viral DNA joining sites (trans disintegration). Another major product, termed fold-back, resulted from an intramolecular attack on the phosphodiester bond at the viral-target DNA junction by the 3'-OH group of the same DNA molecule (cis disintegration). The activity of integrase on the crossbones substrate depended on the presence of viral DNA sequences. For trans disintegration, the optimal length of target DNA between the viral DNA joining sites of the crossbones substrate corresponded to the spacing between the staggered joints formed on two opposite strands of target DNA during retroviral DNA integration in vivo. The activity of integrases on crossbones did not require complementary base pairing between the two half-substrates, indicating that the half-substrates were juxtaposed solely through protein-DNA interactions. The crossbones assay, therefore, measures the ability of integrase to juxtapose two viral DNA ends, an activity which heretofore has been difficult to detect by using purified integrase in conventional assays. Certain mutant integrases that were otherwise inactive with the crossbones substrate could complement one another, indicating that no single protomer in the integrase multimer requires a complete set of functional domains either for catalytic activity or for juxtaposition of the two viral DNA ends by the active multimer.  相似文献   

6.
Successful integration of viral genome into a host chromosome depends on interaction between viral integrase and its recognition sequences. We have used a reconstituted concerted human immunodeficiency virus, type 1 (HIV-1), integration system to analyze the role of integrase (IN) recognition sequences in formation of the IN-viral DNA complex capable of concerted integration. HIV-1 integrase was presented with substrates that contained all 4 bases at 8 mismatched positions that define the inverted repeat relationship between U3 and U5 long terminal repeats (LTR) termini and at positions 17-19, which are conserved in the termini. Evidence presented indicates that positions 17-20 of the IN recognition sequences are needed for a concerted DNA integration mechanism. All 4 bases were found at each randomized position in sequenced concerted DNA integrants, although in some instances there were preferences for specific bases. These results indicate that integrase tolerates a significant amount of plasticity as to what constitutes an IN recognition sequence. By having several positions randomized, the concerted integrants were examined for statistically significant relationships between selections of bases at different positions. The results of this analysis show not only relationships between different positions within the same LTR end but also between different positions belonging to opposite DNA termini.  相似文献   

7.
The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3′ processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown.  相似文献   

8.
HIV-1 integrase crosslinked oligomers are active in vitro   总被引:3,自引:2,他引:3       下载免费PDF全文
The oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site integration of the two viral LTR ends into a target DNA in vitro, whereas the isolated dimeric form of the enzyme was involved in the processing and integration of only one viral end. Accurate concerted integration by IN tetramers was confirmed by cloning and sequencing. Kinetic studies of DNA-integrase complexes led us to propose a model explaining the formation of an active complex. Our data suggest that the tetrameric IN bound to the viral DNA ends is the minimal complex involved in the concerted integration of both LTRs and should be the oligomeric form targeted by future inhibitors.  相似文献   

9.
10.
Pandey KK  Bera S  Grandgenett DP 《Biochemistry》2011,50(45):9788-9796
The assembly mechanism for the human immunodeficiency virus type 1 (HIV) synaptic complex (SC) capable of concerted integration is unknown. Molecular and structural studies have established that the HIV SC and prototype foamy virus (PFV) intasome contain a tetramer of integrase (IN) that catalyzes concerted integration. HIV IN purified in the presence of 1 mM EDTA and 10 mM MgSO(4) was predominately a monomer. IN efficiently promoted concerted integration of micromolar concentrations of 3'-OH recessed and blunt-ended U5 long terminal repeat (LTR) oligonucleotide (ODN) substrates (19-42 bp) into circular target DNA. Varying HIV IN to U5 DNA showed that an IN dimer:DNA end molar ratio of 1 was optimal for concerted integration. Integration activities decreased with an increasing length of the ODN, starting from the recessed 18/20 or 19/21 bp set to the 31/33 and 40/42 bp set. Under these conditions, the average fidelity for the HIV 5 bp host site duplication with recessed and blunt-ended substrates was 56%. Modifications of U5 LTR sequences beyond 21 bp from the terminus on longer DNA (1.6 kb) did not alter the ~32 bp DNaseI protective footprint, suggesting viral sequences beyond 21 bp were not essential for IN binding. The results suggest IN binds differentially to an 18/20 bp than to a 40/42 bp ODN substrate for concerted integration. The HIV IN monomer may be a suitable candidate for attempting crystallization of an IN-DNA complex in the absence or presence of strand transfer inhibitors.  相似文献   

11.
Integration of retroviral DNA into the host chromosome requires a virus-encoded integrase (IN). IN recognizes, cuts and then joins specific viral DNA sequences (LTR ends) to essentially random sites in host DNA. We have used computer-assisted protein alignments and mutagenesis in an attempt to localize these functions within the avian retroviral IN protein. A comparison of the deduced amino acid sequences for 80 retroviral/retrotransposon IN proteins reveals strong conservation of an HHCC N-terminal 'Zn finger'-like domain, and a central D(35)E region which exhibits striking similarities with sequences deduced for bacterial IS elements. We demonstrate that the HHCC region is not required for DNA binding, but contributes to specific recognition of viral LTRs in the cutting and joining reactions. Deletions which extend into the D(35)E region destroy the ability of IN to bind DNA. Thus, we propose that the D(35)E region may specify a DNA-binding/cutting domain that is conserved throughout evolution in enzymes with similar functions.  相似文献   

12.
Rous sarcoma virus (RSV), like all retroviruses, encodes an integrase protein that is responsible for covalently joining the reverse-transcribed viral DNA to host DNA. We have probed the organization of functions within RSV integrase by constructing mutant derivatives and assaying their activities in vitro. We find that deletion derivatives lacking the amino-terminal 53 amino acids, which contain the conserved H-X(3-7)-H-X(23-32)-C-X(2)-C (HHCC) Zn(2+)-binding motif, are greatly impaired in their ability to carry out two reactions characteristic of integrase proteins: specific cleavage of the viral DNA termini and DNA strand transfer. Deletion mutants lacking the carboxyl-terminal 69 amino acids are also unable to carry out these reactions. However, all deletion mutants that retain the central domain are capable of carrying out disintegration, an in vitro reversal of the normal DNA strand transfer reaction, indicating that the catalytic center probably lies within this central region. Another conserved motif, D-X(39-58)-D-X(35)-E, is found in this central domain. These findings with RSV integrase closely parallel previous findings with human immunodeficiency virus integrase, indicating that a modular catalytic domain is a general feature of this family of proteins. Surprisingly, and unlike results obtained so far with human immunodeficiency virus integrase, efficient strand transfer activity can be restored to a mutant RSV integrase lacking the amino-terminal HHCC domain by fusion to various short peptides. Furthermore, these fusion proteins retain the substrate specificity of RSV integrase. These data support a model in which the integrase activities required for strand transfer in vitro, including substrate recognition, multimerization, and catalysis, all lie primarily outside the amino-terminal HHCC domain.  相似文献   

13.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

14.
A tetramer of HIV-1 integrase (IN) stably associates with the viral DNA ends to form a fully functional concerted integration intermediate. LEDGF/p75, a key cellular binding partner of the lentiviral enzyme, also stabilizes a tetrameric form of IN. However, functional assays have indicated the importance of the order of viral DNA and LEDGF/p75 addition to IN for productive concerted integration. Here, we employed Förster Resonance Energy Transfer (FRET) to monitor assembly of individual IN subunits into tetramers in the presence of viral DNA and LEDGF/p75. The IN–viral DNA and IN–LEDGF/p75 complexes yielded significantly different FRET values suggesting two distinct IN conformations in these complexes. Furthermore, the order of addition experiments indicated that FRET for the preformed IN–viral DNA complex remained unchanged upon its subsequent binding to LEDGF/p75, whereas pre-incubation of LEDGF/p75 and IN followed by addition of viral DNA yielded FRET very similar to the IN–LEDGF/p75 complex. These findings provide new insights into the structural organization of IN subunits in functional concerted integration intermediates and suggest that differential multimerization of IN in the presence of various ligands could be exploited as a plausible therapeutic target for development of allosteric inhibitors.  相似文献   

15.
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the genome of a human cell is an essential step in the viral replication cycle. Understanding of the integration process has been facilitated by the development of in vitro assays using specific oligonucleotides and recombinant integrase. However, understanding of the biology of retroviral integration will require in vitro and in vivo model systems using long DNA substrates that mimic the HIV cDNA. We have now studied the activity of recombinant HIV-1 integrase on a linear 4.7 kb double-stranded DNA, containing flanking regions of approximately 200 bp that represent the intact ends of the HIV-1 long terminal repeat (LTR) sequences (mini-HIV). The strand transfer products of the integration reaction can be directly visualized after separation in agarose gels by ethidium bromide staining. The most prominent reaction product resulted from integration of one LTR end into another LTR end (U5 into U5 and U5 into U3). Sequence analysis of the reaction products showed them to be products of legitimate integration preceded by correct processing of the viral LTR ends. Hotspots for integration were detected. Electron microscopy revealed the presence of a range of reaction products resulting from single or multiple integration events. The binding of HIV-1 integrase to mini-HIV DNA was visualized. Oligomers of integrase seem to induce DNA looping whereby the enzyme often appears to be bound to the DNA substrate that adopts the structure of a three-site synapsis that is reminiscent of the Mu phage transposase complex.  相似文献   

16.
Insertion of the linear retrovirus DNA genome into the host DNA by the virus-encoded integrase (IN) is essential for efficient replication. We devised an efficient virus-like DNA plasmid integration assay which mimics the standard oligonucleotide assay for integration. It permitted us to study, by electron microscopy and sequence analysis, insertion of a single long terminal repeat terminus (LTR half-site) of one plasmid into another linearized plasmid. The reaction was catalyzed by purified avian myeloblastosis virus IN in the presence of Mg2+. The recombinant molecules were easily visualized and quantitated by agarose gel electrophoresis. Agarose gel-purified recombinants could be genetically selected by transformation of ligated recombinants into Escherichia coli HB101 cells. Electron microscopy also permitted the identification and localization of IN-DNA complexes on the virus-like substrate in the absence of the joining reaction. Intramolecular and intermolecular DNA looping by IN was visualized. Although IN preferentially bound to AT-rich regions in the absence of the joining reaction, there was a bias towards GC-rich regions for the joining reaction. Alignment of 70 target site sequences 5' of the LTR half-site insertions with 68 target sites previously identified for the concerted insertion of both LTR termini (LTR full-site reaction) indicated similar GC inflection patterns with both insertional events. Comparison of the data suggested that IN recognized only half of the target sequences necessary for integration with the LTR half-site reaction.  相似文献   

17.
D Esposito  R Craigie 《The EMBO journal》1998,17(19):5832-5843
HIV-1 integrase specifically recognizes and cleaves viral end DNA during the initial step of retroviral integration. The protein and DNA determinants of the specificity of viral end DNA binding have not been clearly identified. We have used mutational analysis of the viral end LTR sequence, in vitro selection of optimal viral end sequences, and specific photocrosslinking to identify regions of integrase that interact with specific bases in the LTR termini. The results highlight the involvement of the disordered loop of the integrase core domain, specifically residues Q148 and Y143, in binding to the terminal portion of the viral DNA ends. Additionally, we have identified positions upstream in the LTR termini which interact with the C-terminal domain of integrase, providing evidence for the role of that domain in stabilization of viral DNA binding. Finally, we have located a region centered 12 bases from the viral DNA terminus which appears essential for viral end DNA binding in the presence of magnesium, but not in the presence of manganese, suggesting a differential effect of divalent cations on sequence-specific binding. These results help to define important regions of contact between integrase and viral DNA, and assist in the formulation of a molecular model of this vital interaction.  相似文献   

18.
Integrase is an essential retroviral enzyme, catalyzing the stable integration of reverse transcribed DNA into cellular DNA. Several aspects of the integration mechanism, including the length of host DNA sequence duplication flanking the integrated provirus, which can be from 4 to 6 bp, and the nucleotide preferences at the site of integration, are thought to cluster among the different retroviral genera. To date only the spumavirus prototype foamy virus integrase has provided diffractable crystals of integrase-DNA complexes, revealing unprecedented details on the molecular mechanisms of DNA integration. Here, we characterize five previously unstudied integrase proteins, including those derived from the alpharetrovirus lymphoproliferative disease virus (LPDV), betaretroviruses Jaagsiekte sheep retrovirus (JSRV), and mouse mammary tumor virus (MMTV), epsilonretrovirus walleye dermal sarcoma virus (WDSV), and gammaretrovirus reticuloendotheliosis virus strain A (Rev-A) to identify potential novel structural biology candidates. Integrase expressed in bacterial cells was analyzed for solubility, stability during purification, and, once purified, 3′ processing and DNA strand transfer activities in vitro. We show that while we were unable to extract or purify accountable amounts of WDSV, JRSV, or LPDV integrase, purified MMTV and Rev-A integrase each preferentially support the concerted integration of two viral DNA ends into target DNA. The sequencing of concerted Rev-A integration products indicates high fidelity cleavage of target DNA strands separated by 5 bp during integration, which contrasts with the 4 bp duplication generated by a separate gammaretrovirus, the Moloney murine leukemia virus (MLV). By comparing Rev-A in vitro integration sites to those generated by MLV in cells, we concordantly conclude that the spacing of target DNA cleavage is more evolutionarily flexible than are the target DNA base contacts made by integrase during integration. Given their desirable concerted DNA integration profiles, Rev-A and MMTV integrase proteins have been earmarked for structural biology studies.  相似文献   

19.
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions.  相似文献   

20.
Viral integrase catalyzes the integration of the linear viral DNA genome into the chromatin of the infected host cell, an essential step in the life cycle of retroviruses. The reaction produces a characteristic small duplication of host sequences at the site of integration, implying that there is a close juxtaposition of the viral DNA ends during a concerted integration event. We have used an in vitro assay to measure the concerted integration of virus-like plasmid DNA into naked lambda DNA catalyzed by virion purified avian integrase. In contrast to in vivo avian integration, which has strong fidelity for a 6-bp duplication, purified avian integrase in the context of this assay produced a distribution of duplication sizes, with the 6-bp size dominating. The metal cofactor Mg2+ induced increased fidelity for the 6-bp duplication relative to that with Mn2+. The immediate sequence of the host site may also influence duplication size in that we found sites that sustained multiple independent integration events producing the same duplication size. Additionally, for each set of cloned integration sites (5, 6, and 7 bp), a unique but similar symmetrical pattern of G/C and A/T sequence biases was found. Using duplex oligonucleotides as target substrates, we tested the significance of the 6-bp G/C and A/T pattern for site selection. In the context of this assay, which is likely dominated by the integration of only one viral end, the 6-bp pattern was not preferred. Instead, integration was predominantly into the 3' ends of the oligonucleotides. The combined results of the lambda and oligonucleotide assays indicated that although host site selection has properties in common with recognition of the viral DNA termini, the nonrandom sequence preferences seen for host site selection were not identical to the sequence requirements for long terminal repeat recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号