首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Widespread generalist predators may affect declining keystone prey populations. However, this phenomenon is not well understood. In this paper, we assessed whether the abundance and population growth of European rabbits Oryctolagus cuniculus, a keystone prey species in Mediterranean Iberia, was related to the abundance and diet of red foxes, Vulpes vulpes, a widespread generalist predator. In a locality in central Spain, where rabbit population abundance declined, we estimated rabbit abundance during almost 3 years and determined fox abundance and diet during two concurrent years. We calculated a fox predation index (percentage of consumed rabbit biomass × fox abundance) to assess the importance of rabbits to foxes. We employed a multi–model approach to explain rabbit abundance and population growth. Foxes consumed between 60 and 99 % rabbit biomass in their diets, and this was independent of rabbit abundance. Periods of higher fox predation index coincided with lower rabbit density and vice versa. Two models best explained rabbit abundance and four rabbit population growth. They included the fox predation index and its interaction with rabbit abundance during the previous month. Altogether, fox predation, intraspecific density dependence, and their interaction partly explained rabbit population dynamics. We conclude that in order to propel the recovery of the rabbit in Iberia, it is essential to better understand the role of these factors in driving the abundance of the species.  相似文献   

2.
The alternative prey hypothesis predicts that predators respond both functionally and numerically (with a time lag) to fluctuations in the main prey abundance, which affects the survival of alternative prey. This pattern was found in northern Europe in the community formed by voles (Microtidae), red foxes (Vulpes vulpes) and roe deer (Capreolus capreolus). We studied the same predator—prey community in a temperate latitude where, according to the predation hypothesis, only the functional response of predators to changes in main prey availability should occur. In the years 1997–2007, in western Poland, we estimated the index of common vole (Microtus arvalis) abundance (burrow counts), the density of foxes (spotlight counts), the young production in foxes (young/adult ratio), the index of fox predation on fawns (prey remains near dens) as well as the reproduction index (fawn/female ratio) and density of roe deer (total counts). The vole abundance fluctuated considerably, the young production in foxes did not correlate with the main prey availability, but the density of foxes showed direct numerical response. The index of fox predation on fawns decreased with the vole abundance and negatively affected the fawn/female ratio in roe deer. Thus, the relationships between voles and foxes were not fully consistent with the predation hypothesis. The direct numerical response of foxes should tend to stabilize this predator—prey community. It is suggested, however, that responses showed by vole-eating predators in temperate latitudes may sometimes affect their alternative prey, including animals with unfavourable conservation status.  相似文献   

3.
Interactions between wild carnivore abundance and landscape composition in agricultural landscapes are poorly understood despite their importance to both production and conservation. In Australia, introduced red foxes (Vulpes vulpes) prey on both native species and lambs in the temperate agricultural regions. Historically these areas were extensively cleared of native vegetation. Recently revegetation programmes have been implemented, but there is concern that this may benefit foxes and hence increase their impacts. We used an artificial prey placed in eight revegetated (6–12% cover) and 10 cleared (0–1.5% cover) landscapes of ~700 ha to assess how these landscapes influenced fox predation rates. In June and August 2006 (winter) when we expect fox populations to be relatively stable following juvenile dispersal, predation rates were 1.5–2 times higher in revegetated landscapes than in cleared landscapes. We found no evidence of microhabitat effects on predation rates suggesting these landscape‐level differences were probably due to differences in fox population density. In April 2007 (autumn) the results were more variable, possibly indicating more transient populations including dispersing juveniles at this time. Our results suggest that the impact of foxes on highly vulnerable prey could increase with revegetation. However, the benefits of revegetation to prey may offset negative impacts of foxes and future work is required to assess the likely net effects.  相似文献   

4.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

5.
From 1993 to 2001, we conducted a series of experiments in a mixed grassland–woodland system in central New South Wales (NSW) to quantify the interactions between red foxes and their prey and competitors. Foxes were removed from two areas around the perimeter of Lake Burrendong, and data were collected from these areas and a nearby untreated area before, during, and after the period of fox control. The arrival of rabbit hemorrhagic disease (RHD) in 1996 provided an opportunity to examine the interactive effects of controlling foxes and rabbits. In this landscape, typical of central NSW, (a) the fox population was not affected by a large reduction in the abundance of rabbits, or vice versa; (b) the cat population declined in areas where foxes were removed after the large RHD-induced reduction in rabbit numbers, but there was no consistent response to the removal of foxes; (c) the abundance of some macropod species increased in response only to the combined removal of rabbits and foxes; (d) there were no consistent changes in the abundances of bird species in response to the removal of either foxes or rabbits, but there were clear habitat differences in bird species richness; and (e) there was likely to be an increase in woody plant species after the large reduction in rabbit populations by RHD. We conclude that (a) long-term field experiments (more than 3 years) are required to quantify the indirect consequences of controlling foxes and rabbits, and (b) single manipulations, such as fox control or rabbit control, are not necessarily sufficient for the conservation of remnant woodland communities in southeastern Australia.  相似文献   

6.
European Red Fox (Vulpes vulpes) baiting with 1080 poison (sodium fluoroacetate) is undertaken in many Australian sites to reduce fox abundance and to protect vulnerable native species from predation. The longest continuous use of fox baiting for fauna conservation commenced in south‐west Western Australia in the 1980s and includes baiting Dryandra Woodland and Tutanning Nature Reserve. The trap success of the Woylie (Bettongia penicillata) in these two reserves initially increased more than 20‐fold after the commencement of baiting and was maintained until 2000. Woylie captures then decreased rapidly, despite ongoing fox baiting, so the long‐term efficacy of 1080 baiting was questioned. Here, fox density and probabilities of detection, re‐detection and survival between replicated baited and unbaited sites were compared by modelling capture–recapture of individual foxes. These were identified from microsatellite DNA genotypes obtained non‐invasively from hair, scat and saliva samples. The frequency and duration of fox residencies were also quantified. Remote cameras were used to determine the fate of baits but uptake by foxes was low, whereas nontarget species' bait uptake was high. Nevertheless, foxes inhabiting baited reserves had significantly higher mortality, shorter residency times, and 80% lower density than foxes inhabiting unbaited reserves. Baiting continues to significantly reduce fox abundance after more than 25 years of continuous use. This has positive implications for fox control programmes throughout Australia but reduced fox abundance may facilitate increased predation by feral Cats (Felis catus).  相似文献   

7.
Mechanistic models for herbivore populations responding to rainfall-driven pasture are used to explore the effect of temporal variability in a primary resource on the abundance and distribution of a species. If the numerical response of the herbivore to pasture is a convex function, then gains made over time intervals with above average rainfall do not compensate for losses incurred when rainfall is below average. Populations therefore fare worse when rainfall is variable compared with when rainfall is reliable. It is demonstrated that this result is independent of the distribution of rainfall. Sensitivity of a species to variability, and hence the limit to its distribution in variable environments, is directly proportional to the difference between population growth rate under ideal conditions and the estimated rate of decline as the species' resource tends to zero. When density dependence is included in the numerical response, the average abundance of a species declines with increasing variability in its primary resource. However, a model for the dynamics of pasture and rabbits (Oryctolagus cuniculus) and red foxes (Vulpes vulpes) in southern Australia, is used to illustrate that trophic interactions can reverse the effect of variability: in the absence of foxes, the mean abundance of rabbits declines with variability as expected, but in the full model the mean abundance of rabbits increases.  相似文献   

8.
The aim of this study was to estimate long-term changes in the winter feeding pattern of red foxes Vulpes vulpes and in their predation on brown hares Lepus europaeus in relation to the decreasing abundance of hares in western Poland in 1965/1966–2006/2007. The frequencies of occurrence in the stomachs of culled foxes (N?=?726) were used as indices of prey capture rates. The average autumn density of brown hares in the study area decreased from 48 individuals/km2 at the turn of the 1960s and 1970s to seven individuals/km2 in 1999–2006. Hares and small rodents were the main food classes of foxes in western Poland at the turn of the 1960s and 1970s; however, the occurrence of hares in the fox diet subsequently decreased, and they were replaced by livestock carrion. The relationship between the occurrence frequency of hares in the fox diet and the hare density was best described by sigmoid equation. It indicates that the red fox showed a type III functional response to long-term changes in hare abundance. When predation rate index was estimated on the basis of functional response, the potential fox predation was density-dependent at low to intermediate hare densities (<25 individuals/km2). This finding suggests that the increase in the number of low-density hare populations may require intensive management measures, e.g. simultaneous use of fox control and habitat improvement.  相似文献   

9.
ABSTRACT The distribution and abundance of swift foxes (Vulpes velox) has declined from historic levels. Causes for the decline include habitat loss and fragmentation, incidental poisoning, changing land use practices, trapping, and predation by other carnivores. Coyotes (Canis latrans) overlap the geographical distribution of swift foxes, compete for similar resources, and are a significant source of mortality amongst many swift fox populations. Current swift fox conservation and management plans to bolster declining or recovering fox populations may include coyote population reduction to decrease predation. However, the role of coyote predation in swift fox population dynamics is not well-understood. To better understand the interactions of swift foxes and coyotes, we compared swift fox population demographics (survival rates, dispersal rates, reproduction, density) between areas with and without coyote population reduction. On the Piñon Canyon Maneuver Site, Colorado, USA, we monitored 141 swift foxes for 65,226 radio-days from 15 December 1998 to 14 December 2000 with 18,035 total telemetry locations collected. Juvenile swift fox survival rate was increased and survival was temporarily prolonged in the coyote removal area. Adult fox survival patterns were also altered by coyote removal, but only following late-summer coyote removals and, again, only temporarily. Coyote predation remained the main cause of juvenile and adult fox mortality in both areas. The increase in juvenile fox survival in the coyote removal area resulted in a compensatory increase in the juvenile dispersal rate and an earlier pulse in dispersal movements. Adult fox dispersal rate was more consistent throughout the year in the coyote removal area. Coyote removal did not influence the reproductive parameters of the swift foxes. Even though juvenile survival increased, swift fox density remained similar between the areas due to the compensatory dispersal rate among juvenile foxes. We concluded that the swift fox population in the area was saturated. Although coyote predation appeared additive in the juvenile cohort, it was compensatory with dispersal.  相似文献   

10.
Apparent competition between prey is hypothesized to occur more frequently in environments with low densities of preferred prey, where predators are forced to forage for multiple prey items. In the arctic tundra, numerical and functional responses of predators to preferred prey (lemmings) affect the predation pressure on alternative prey (goose eggs) and predators aggregate in areas of high alternative prey density. Therefore, we hypothesized that predation risk on incidental prey (shorebird eggs) would increase in patches of high goose nest density when lemmings were scarce. To test this hypothesis, we measured predation risk on artificial shorebird nests in quadrats varying in goose nest density on Bylot Island (Nunavut, Canada) across three summers with variable lemming abundance. Predation risk on artificial shorebird nests was positively related to goose nest density, and this relationship was strongest at low lemming abundance when predation risk increased by 600% as goose nest density increased from 0 to 12 nests ha?1. Camera monitoring showed that activity of arctic foxes, the most important predator, increased with goose nest density. Our data support our incidental prey hypothesis; when preferred prey decrease in abundance, predator mediated apparent competition via aggregative response occurs between the alternative and incidental prey items.  相似文献   

11.
Feeding ecology of red fox Vulpes vulpes was studied by scat analysis and snow-tracking m primeval temperate forest and adjacent meadows during four years (1985/86-1988/89) Winters varied from mild to unusually severe Main food resources for foxes were rodents of open meadows and river valleys (root vole Microtus oeconomus ). forest rodents (bank vole Clethrionomys glareolus and yellow-necked mouse Apodemus flavicollis ), hare Lepus europaetis and carcasses of wild boar Sus scrofa and red deer Cervus elaphus either killed by wolves and lynx or that had died from inanition Composition of fox diet m four cold seasons (autumn-winter) was compared to the abundance of main food resources Prolonged, sharp decline of Microtus was followed by only a twofold decrease of its share in fox diet Foxes continued to prey on declining Microlus The changes in the proportions of forest rodents and hare in fox diet clearly followed the fluctuations in numbers of these two prey Carcasses were alternative, buffer food to foxes and were taken considerably when Microlus and other prey were in low numbers or poorly accessible The depth of snow was the most important factor restricting foxes access to rodents Snow-tracking revealed that foxes dwelling in the forest widely used adjacent open areas In open meadows foxes mainly hunted for rodents, while in the forest the most significant foraging activity was scavenging Seasonal analysis of fox diet revealed that consumption of Microlus by foxes was stable throughout the year (37-47% of biomass consumed) Bank vole significantly contributed to fox diet in autumn, and hare in summer only Scavenging was most pronounced in winter and spring when carcasses made up 30% of biomass taken  相似文献   

12.
We examined how large seasonal influxes of migratory prey influenced population dynamics of arctic foxes and how this varied with fluctuations in small mammal (lemming and vole) abundance—the main prey of arctic foxes throughout most of their range. Specifically, we compared how arctic fox abundance, breeding density and litter size varied inside and outside a large goose colony and in relation to annual variation in small mammal abundance. Information-theoretic model selection showed that (1) breeding density and fox abundance were 2–3 times higher inside the colony than they were outside the colony and (2) litter size, breeding density and annual variation in fox abundance in the colony tracked fluctuations in lemming abundance. The influence of lemming abundance on reproduction and abundance of arctic foxes outside the colony was inconclusive, largely because fox densities outside the colony were low, which made it difficult to detect such relationships. Lemming abundance was, thus, the main factor governing reproduction and abundance of arctic foxes in the colony, whereas seasonal influxes of geese and their eggs provided foxes with external subsidies that elevated breeding density and fox abundance above that which lemmings could support. This study highlights (1) the relative importance of migratory prey and other foods on the abundance and reproduction by local consumers and (2) how migratory animals function as vectors of nutrient transfer between distant ecosystems such as Arctic environments and wintering areas by geese thousands of kilometres to the south.  相似文献   

13.
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes ), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus ). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40'N, 15°25'E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns.  相似文献   

14.
We investigate the feeding responses of the red fox (Vulpes vulpes) at a regional scale to different densities of European wild rabbit (Oryctolagus cuniculus) in central–southern Spain. Rabbit abundance indices were obtained in 86 localities during summer 2002. The diet of the fox was studied by analysis of 114 scats collected in 47 of these localities. The feeding response of the fox was examined by a representation of the dry weight percent of rabbit in the diet as a function of the abundance of rabbits; this used data only from those localities where at least 3 scats were collected (70 fox scats from 18 localities). We evaluated the relationship between rabbit abundance and the diversity of the diet of the fox. The feeding patterns of red foxes approximated to Holling’s type III functional response, typical of opportunistic predators. There was a negative relationship between the diversity of the fox’s diet and the abundance of rabbits. Therefore, the fox apparently behaves as a facultative predator, feeding on rabbits when they are abundant and shifting to other prey (and hence a more diverse diet) when rabbits are scarce. These findings are the first step towards understanding the potential role of red foxes in regulating rabbit populations in central–southern Spain.  相似文献   

15.
Summary The hypothesis that carnivores can significantly suppress prey populations after they collapse during drought was tested by predator-removal experiments. Low populations of rabbits (Oryctolagus cuniculus) responded with significantly accelerated growth where foxes (Vulpes vulpes) and feral cats (Felis catus) were continually shot. Experiments in years of good pasture and poor were confirmatory. After only 14 months, the rabbits were well on their way to another eruption whereas untreated populations had remained low for 2.5 yrs until a second drought. These studies confirm the impact of carnivores found for low populations of cyclical prey but there was no measurable effect of predator-removal on the population declines in our studies. They were due to aridity and poor pastures. The concept of Environmentally Modulated Predation is presented. Only after the intervention of a widespread environmental event is such limiting predation possible. Drought is also the cause in arid Australia for dingoes (Canis familiaris dingo) preying seqenntially on rodents, rabbits and red kangaroos, while wildfire was the cause in temperate forests. Such environmental intervention may be more widespread than usually considered, triggering some apparent predator-prey cycles. The major factors limiting rabbits in inland Australia are: adequacy of green herbage during breeding, food scarcity during average summers, critical shortages of food and its low quality (including moisture content) during crashes in drought, followed by limiting predation. Contrasting life-histories are one cause for the ultimate escape of rabbit populations from limiting predation as rabbits can breed continuously but carnivores seasonally only. Patchy predation and alternate prey may also play a part.  相似文献   

16.
We investigated diet composition, habitat selection and spatial behaviour of the red fox (Vulpes vulpes) in relation to the availability of wader nests in a coastal polder area in southwest Denmark. The predatory role of the red fox in wet grassland ecosystems has profound implications for conservation status of declining populations of grassland breeding waders. However, few studies have focussed on the foraging ecology and behaviour of the red fox in these landscapes. Faecal analyses revealed that fox diet consisted of birds (43 % of prey remains?/?32 % of biomass), rodents (39 %?/?21 %), sheep (mainly as carrion, 14 %?/?41 %) and lagomorphs (4 %?/?7 %). Charadriiformes (including waders) comprised 3–12 % of prey remains throughout the year. Telemetry data and spotlight counts indicated that foxes did not select areas with high densities of breeding waders, suggesting that foxes did not target wader nests while foraging. Foxes maintained stable home ranges throughout their lives, indicating that the area sustained a permanent fox population all year round. The population densities, estimated from spotlight surveys, were 0.74 visible foxes km?2 (95 % CI; 0.34–1.61) on the preferred breeding habitat for waders and 1.21 km?2 in other open habitats such as cultivated fields. Our results indicate that red fox predation on wader nests is incidental, consistent with the notion that red foxes are generalist predators that opportunistically subsist on many prey groups.  相似文献   

17.
Previous studies on intraguild predation have mainly focused on within-class assemblages, even though avian top predators may also influence mammalian mesopredator prey. By using nation-wide long-term data from Finland, northern Europe, we examined the impacts of golden eagles (Aquila chrysaetos) together with red foxes (Vulpes vulpes) and pine martens (Martes martes) on forest-dwelling herbivores, black grouse (Tetrao tetrix) and hazel grouse (Tetrastes bonasia). We hypothesized that eagles may alleviate the overall predation pressure on grouse by imposing intraguild predation risk on mesopredators. The predation impact of eagle was modelled using eagle density estimates and distance to eagle nest. Wildlife triangle counts were used as predation impact proxies of mammalian mesopredators and as measures of response in grouse. Our results show that eagle density correlated negatively with black grouse abundance indices while being positively associated with the proportion of juveniles in both grouse species, irrespective of the abundance of mesopredators. Yet, foxes and martens alone had a negative effect on the abundance indices and the proportion of young in the two grouse species. This suggests that the possible cascading effects of eagles are not mediated by decreased mesopredator numbers, but instead by fear effects. Alternatively, they may be mediated by other species than fox or marten studied here. In conclusion, we found support for the hypothesis that eagles provide protection for juvenile black and hazel grouse, whereas they are a threat for adult grouse. This important information helps us to better understand the role of avian top predators in terrestrial ecosystems.  相似文献   

18.
Invasive predators have severe impacts on global biodiversity, and their effects in Australia have been more extreme than on any other continent. The spotted‐tailed quoll (Dasyurus maculatus), an endangered marsupial carnivore, coexists with three eutherian carnivores, the red fox (Vulpes vulpes), feral cat (Felis catus) and wild dog (Canis lupus ssp.) with which it did not coevolve. No previous study has investigated dietary overlap between quolls and the suite of three eutherian carnivores. By analysing scats, we aimed to quantify dietary overlap within this carnivore assemblage in eastern Australia, and to detect any differences that may facilitate coexistence. We also sought evidence of intraguild predation. Dietary overlap between predators was extensive, with the greatest similarity occurring between foxes and cats. However, some differences were apparent. For example, cats mainly consumed smaller prey, and wild dogs larger prey. Quolls showed greater dietary overlap with foxes and cats than with dogs. Intraguild predation was evident, with fox remains occurring in 3% of wild dog scats. Our results suggest wild dogs competitively dominate invasive foxes, which in turn are likely to compete with the endangered quoll.  相似文献   

19.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

20.
We investigated the impact of red fox (Vulpes vulpes Linnaeus 1758) predation on juvenile eastern grey kangaroos (Macropus giganteus Shaw 1790) using a replicated predator removal experiment. In two sites in Namadgi National Park, south‐eastern Australia, a persistent 1080 poisoning campaign over 18 months reduced fox density by more than 85%, and to less than 10% of the fox density in two other sites with no fox baiting. Changes in the mother : young ratios and densities of kangaroo populations were monitored twice monthly along 2‐km transects in each site from July 1993 to February 1995. Compared to nonremoval sites, where foxes were controlled, 25–40% more females retained juveniles over the period when these young became emergent from the pouch. This higher survival of emergent pouch young resulted in a significantly higher proportion of juveniles in kangaroo populations at fox control sites, which resulted in a significantly higher annual growth rate. We conclude that predation upon juveniles is an important limiting factor for kangaroo populations in Namadgi NP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号