首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing the number of antigen-specific T cell clones in a T cell proliferation assay resulted in a shift in the antigen dose-response curves toward higher amounts of antigen (i.e., more antigen was required to achieve a given degree of stimulation). The antigen dose-response curve shifts were found to reflect the competition that occurred between the antigen-specific T cell receptors for their ligand, a combination of antigen and Ia molecule. This observation made it possible to determine whether the difference in the potency with which several synthetic cytochrome c analogs could stimulate one cytochrome c-specific T cell clone was due to a difference in the avidity of the antigen-specific receptors on the T cell clone for the different Ia molecule-antigen combinations. It was demonstrated that a single amino acid substitution at position 103 (which greatly diminished the potency of the analog) did not significantly alter the avidity of the T cell antigen-specific receptor for its ligand. In contrast, a substitution at position 99 (which resulted in a comparable decrease in potency) caused a dramatic loss of avidity. These results are consistent with the previous designation of residue 99 as one site on the antigen that contacts the T cell antigen-specific receptor, and of residue 103 as one part of the antigen that contacts the Ia molecule.  相似文献   

2.
The dominant T cell determinant on moth and pigeon cytochromes c in B10.A (E beta k:E alpha k) mice is located in the C-terminal portion of the protein, contained within residues 93-103 or 93-104. Thirty-seven antigen analogs, containing single amino acid substitutions at positions 98, 99, 101, 102, 103, and 104, were synthesized. The effects of the substitutions on in vitro antigenicity and in vivo immunogenicity were determined. Functional assays with T cell clones identified residues 99, 101, 102, and 103 as critical, based on their effect on antigenic potency. Peptides containing substitutions at residues 99, 101, and 102 were capable of eliciting unique clones upon immunization of B10.A mice. This was consistent with the identification of these residues as part of the epitope, the site on the antigen that interacts with the T cell receptor. Immunization with peptides substituted at residue 103, however, failed to elicit clones with unique specificity for the immunogen. When these peptides were tested for their ability to stimulate the T cell clones with antigen-presenting cells from B10.A(5R) mice expressing the E beta b:E alpha k Ia molecule, a consistent change in the relative antigenic potency was observed with 50% of the peptides. The effect of the Ia molecule on the antigenic potency ruled out the possibility that residue 103 nonspecifically affected antigen uptake or processing and identified residue 103 as part of the agretope, the site that interacts with the Ia molecule. The locations of the agretope and the epitope on this antigenic determinant appear to be fixed, even in the presence of large numbers of amino acid substitutions. However, some substitutions were found to affect both the agretope and the epitope, placing limits on the functional independence of the two sites. The results are discussed in terms of the trimolecular complex model of T cell activation and the implications of these data for antigen-Ia molecule interactions.  相似文献   

3.
We have assessed the inhibitory effects of various monoclonal antibodies on the expression of the IL 2 receptor. Anti-LFA-1, but not anti-Ly-2, markedly inhibited the induction of the IL 2 receptor on the Ly-2+ subset. T-depleted spleen cells, L cells, and B lymphoma cells all functioned as potent accessory cells (AC) for the induction of the IL 2 receptor on L3T4+ T cells. Anti-LFA-1 inhibited the induction of the IL 2 receptor irrespective of the type of AC used. Anti-L3T4 only inhibited the induction of IL 2 receptor expression when L cells were the source of AC. The inhibitory capacity of anti-L3T4 was not related to the expression of Ia on the AC population, because the magnitude of inhibition was comparable in cultures containing either Ia+ or Ia- L cells, whereas no inhibition was seen with either Ia+ or Ia-B lymphoma cells. We conclude from these studies that LFA-1 plays a critical role in mitogen-induced activation of both T cell subsets by promoting both T-AC and T-T interactions. Although anti-L3T4 can inhibit T cell activation in the absence of the recognition of Ia, the mechanism of inhibition and the proposed target molecule for L3T4 on the AC or the T cell have not been determined in our studies. A number of different models for the function of this cell surface antigen are discussed.  相似文献   

4.
The functions of antigen-presenting cells (APC) in the initiation of T cell activation was examined by culturing antigen-bearing guinea pig macrophages (M phi) with T cells obtained from antigen-primed animals. Although such antigen-bearing M phi stimulated primed syngeneic T cell DNA synthesis, as assessed by tritiated thymidine incorporation, paraformaldehyde fixation (0.15% for 1 min at 37 degrees C) abolished this capacity. Analysis with acridine orange staining indicated that fixed antigen-bearing M phi could not trigger primed syngeneic T cells to progress from the G0 to the G1 phase of the cell cycle. The addition of control non-antigen-bearing syngeneic or allogeneic M phi but not interleukin 1 or 2 to cultures of T cells and fixed APC permitted a proliferative response. Although the interaction between fixed antigen-bearing M phi and responding T cells was genetically restricted, there was no similar restriction for the supplemental control M phi. In fact, completely Ia-negative endothelial cells (EC) and fibroblasts (FB) could restore antigen responsiveness to cultures of fixed antigen-bearing M phi and syngeneic responding T cells, although they could not directly present antigen. Moreover, metabolically intact accessory cells, including Ia-negative EC and FB, could take up and process antigen to an immunogenic moiety, which fixed Ia-positive M phi could present to primed T cells. These data indicate that recognition of the antigen-Ia complex on an APC is necessary but not sufficient to trigger proliferation of freshly obtained primed T cells. The results additionally support the conclusion that APC carry out at least two separate functions necessary for the initiation of antigen-induced T cell activation. Not only must the APC display the antigen-Ia complex, but it must also convey another required effect. This influence, which apparently involved the establishment of cell to cell contact, was neither Ia nor antigen dependent and could only be provided by a metabolically intact cell. By contrast, genetically restricted antigen presentation could be accomplished by a fixed Ia-positive cell. Only when both the antigen-Ia complex and the influence of an intact accessory cell were provided by the same or different accessory cell were T cells triggered to enter the cell cycle.  相似文献   

5.
Three classes of signalling molecules on B-cell membranes   总被引:1,自引:0,他引:1  
The question of whether surface immunoglobulin and Ia molecules have a signalling function in helper T cell-dependent activation of B cells has been evaluated. Two sources of B cells have been used, one a purified population of hapten-binding B cells, the other a B-cell lymphoma, CH12, with known antigen specificity. Evidence is presented that both immunoglobulin and Ia molecules are receptors actively involved in the initial activation of resting B cells. Nevertheless, the requirements for ligand binding to either receptor can be bypassed under appropriate conditions, and the implications of this result for the function of these molecules is discussed. With respect to B-cell Ia, the authors present data that demonstrate two distinct functions of this molecule, one as a restricting element for T-cell activation, the second as a signalling receptor for B-cell excitation. On the CH12 surface, the I-A molecule fulfills the former function, but T-cell interactions with I-A fail to result in B-cell stimulation, suggesting that B-cell Ia may limit helper T cell-B cell interactions. We suggest that the binding of antigen surface immunoglobulin and binding of helper T-cell receptors to the appropriate Ia molecule(s) results in the activation of genes that encode for a third class of membrane B-cell receptors, those that bind B-cell stimulating factors.  相似文献   

6.
Cloned, protein antigen-specific, Ia-restricted T cell lines frequently (approximately 20%) also respond strongly to stimulator cells from strains expressing stimulatory alleles at the chromosome 1-encoded Mls-locus. Furthermore, such responses are blocked by monoclonal antibodies specific for Ia antigens expressed by the stimulator rather than the responder cells. However, such responses show no specificity for polymorphic determinants on Ia molecules, although in such responses, as in primary and secondary T cell responses to stimulating Mls-locus alleles, I-E molecules appear to play a central role. These results, combined with the unique immunobiology of the primary T cell proliferative response to Mls-locus-disparate stimulator cells, suggest to us that this response involves the interaction of the receptor on T cells for antigen:self Ia with a relatively nonpolymorphic region of Ia glycoproteins. This hypothesis is supported by the observation that a monoclonal antibody to the T cell receptor will inhibit both responses, although the response to Mls-locus-disparate stimulators appears to be more sensitive to these antibodies. We propose that the interaction of the T cell receptor with Ia is stabilized by a cell interaction molecule encoded or regulated by the Mls-locus gene product permitting the T cell receptor:Ia glycoprotein interaction to lead to T cell activation.  相似文献   

7.
Antigen-induced activation of T lymphocytes that co-recognize Ia molecules has been shown to require an antigen-processing step by the presenting cell before T cell stimulation can occur. In this report, we demonstrate that antigen presentation of pigeon cytochrome c to an E kappa beta:E kappa alpha-restricted T cell hybridoma, 2C2, is inhibited by pretreatment of the antigen-presenting cells (APC) either with chloroquine or with fixation by paraformaldehyde. The chloroquine effect was partially reversible after 22 hr; the paraformaldehyde effect was not. In contrast, these treatments had little or no effect on the presentation of the carboxy-terminal cyanogen bromide cleavage fragment of pigeon cytochrome c, residues 81 to 104. There was at least a 50-fold greater potency of the fragment, as compared to that of the intact molecule, when paraformaldehyde-fixed APC were used. In addition, the fixed cells did not present synthetic fragments of the cytochrome c that were nonstimulatory when presented by unfixed cells. This observation showed that the loss of potency, demonstrated previously for analogs of pigeon cytochrome c with single amino acid substitutions at positions such as 99, was not a consequence of an alteration in the rate of antigen-processing. This result is consistent with our earlier hypothesis that these residues are contact amino acids with the antigen-specific T cell receptor or the Ia molecule. The major goal of these experiments was to define the molecular transition that occurred as a result of antigen processing. To achieve this end, we tested a variety of pigeon cytochrome c molecules and fragments for their ability to be presented by paraformaldehyde-fixed APC. Apocytochrome c, the denatured form of the molecule with the heme removed, could not be presented by the fixed cells, nor could the fragment 60-104, derived by acid cleavage of the tryptophan at position 59. Both molecules stimulated an IL 2 response from the T cell hybridoma when unfixed APC were utilized, demonstrating that the conditions used to prepare these two molecules did not destroy their antigenic determinant. In contrast, carboxy-terminal fragments, both native and synthetic, ranging in size from 16 to 39 amino acids, were capable of stimulating in the presence of paraformaldehyde-fixed APC. In particular, the partial-digest cyanogen bromide fragment, residues 66 to 104, was only twofold less potent than the pigeon fragment 81-104.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The activation of helper T lymphocytes has been proposed to result from the sum of low-affinity interactions between the specific immune receptor, as well as nonpolymorphic receptors such as L3T4 on the T cell surface, and nominal antigen and Ia displayed in a multivalent array on the antigen-presenting cell surface. The present work takes advantage of a T cell hybridoma specific for pigeon cytochrome c in the context of I-Ek, which responds to tobacco hornworm moth cytochrome c at one hundredth the concentration of the homologous antigen, to determine if the T cell's requirement for L3T4 and Ia is directly related to its functional affinity for antigen. The results demonstrate that the T cell's activation by pigeon cytochrome c was blocked by antibodies directed to L3T4 and to I-Ek, even at antigen concentrations twofold to fourfold above those required for maximal responses. In contrast, the response to tobacco hornworm moth cytochrome c was not as affected by these antibodies under equivalent superoptimal conditions. The same phenomenon was observed for the T cell's activation by the carboxyl-terminal peptide fragments of the two cytochromes c, which do not require processing, indicating that the differences were not due to the relative efficiency of processing and/or presentation of the antigens. Although both I-Ek- and L3T4-specific antibodies blocked the T cell response to pigeon cytochrome, antibodies to I-Ak had no effect, even though I-Ak had been considered to be a ligand for L3T4. Thus, either Ia does not bind L3T4 or, if it does, I-Ek must be a sufficient ligand for L3T4 for T cells that recognize their antigen in the context of I-Ek. These studies provide more definitive evidence that the T cell's requirement for the functions of Ia and of L3T4 is dependent on the T cell's functional affinity for its antigenic determinant. This data is consistent with a model of T cell activation in which, given a high enough affinity of the T cell receptor for the processed antigen, the requirement for other components of a stimulatory complex, such as Ia and L3T4, may diminish to undetectable levels.  相似文献   

9.
The activation of proliferative T lymphocytes normally involves the simultaneous recognition of a particular foreign antigen and a particular Ia molecule on the surface of antigen-presenting cells, the phenomenon of major histocompatibility complex (MHC) restriction. An analysis of T cell clones specific for pigeon cytochrome c, from B10.A and B10.S(9R) strains of mice, revealed the unusual finding that several of the clones could respond to antigen in association with Ia molecules from either strain. Using these cross-reactive clones, we performed experiments which demonstrated that both the Ia molecule and the T cell receptor contribute to the specificity of antigen recognition; however, MHC-linked low responsiveness to tuna cytochrome c (an immune response gene defect) could not be attributed solely to the efficacy with which the Ia molecules associated with the antigen. These results imply that antigen and Ia molecules are not recognized independently, but must interact at least during the process of T cell activation.  相似文献   

10.
I-A-expressing transfected murine L cells were analyzed as model antigen-presenting cells. Four features of accessory cell function were explored: antigen processing, interaction with accessory molecules (LFA-1, L3T4), influence of Ia density, and ability to stimulate resting, unprimed T lymphocytes. I-A+ L cells could present complex protein antigens to a variety of T cell hybridomas and clones. Paraformaldehyde fixation before but not subsequent to antigen exposure rendered I-A+ L cells unable to present intact antigen. These results are consistent with earlier studies that made use of these methods to inhibit "processing" by conventional antigen-presenting cells. The ability of anti-L3T4 antibody to inhibit T cell activation was the same for either B lymphoma or L cell antigen-presenting cells. In striking contrast, anti-LFA-1 antibody, which totally blocked B lymphoma-induced responses, had no effect on L cell antigen presentation, measured as interleukin 2 (IL 2) release by T hybridomas, proliferation, IL 2 release, or IL 2 receptor upregulation by a T cell clone. I-A+ L cell transfectants were found to have a stable level of membrane I-A and I-A mRNA, even after exposure to interferon-gamma-containing T cell supernatants. In agreement with earlier reports, a proportional relationship between the (Ia) X (Ag) product and T cell response was found for medium or bright I-A+ cells. However, dull I-A+ cells had a disproportionately low stimulatory capacity, suggesting that there may be a threshold density of Ia per antigen-presenting cell necessary for effective T cell stimulation. Finally, I-A-bearing L cells were shown to trigger low, but reproducible primary allogeneic mixed lymphocyte responses with the use of purified responder T cells, indicating that they are capable of triggering even resting T cells. These studies confirm the importance of antigen processing and I-A density in antigen-presenting cell function, but raise questions about the postulated role of the LFA-1 accessory molecule in T cell-antigen-presenting cell interaction. They also illustrate the utility of the L cell transfection model for analysis and dissection of antigen-presenting cell function.  相似文献   

11.
The interaction between the clonally selected T cell receptor, antigen, and Ia molecule is poorly understood at the molecular level. A cell line bearing an altered E beta k molecule has been examined to provide more information about the relationship between Ia structure and function. The cell line, 2B1, was derived from the TA3 B cell hybridoma through a series of negative and positive immunoselection steps. The 2B1 mutant lacked the binding site recognized by the 17.3.3 monoclonal antibody (mAb) but presented antigen normally to all I-Ek-restricted T cell hybridomas and clones examined. Sequence analysis of the mutant E beta k gene showed a single base transition (G----A) that resulted in an arginine to a histidine substitution at amino acid 49 of the beta 1 domain. This mutation demonstrates that residue 49 is not involved in antigen presentation to T cells but can be involved in B cell recognition (mAb binding).  相似文献   

12.
The release of immune or gamma interferon (IFN-gamma) by major histocompatibility complex (MHC)-restricted pigeon cytochrome c-specific Lyt 1+2-, interleukin 2 (IL 2)-producing proliferative T cell clones when cultured with antigen and antigen-presenting cells (APC) is a sensitive measure of the state of activation of the cell. In general, the fine specificity of T cell activation was similar when activation was measured either by IFN-gamma production or by proliferation. In response to antigen and the correct Ia molecule, the T cell clones produced both high titered IFN-gamma and a strong proliferative response. However, IFN-gamma production and the degree of proliferation of the T cell clones differed at high antigen concentrations. As antigen concentration increased, the magnitude of proliferation became submaximal whereas the IFN-gamma response became maximal suggesting that IFN-gamma produced by the cells might act as an autoregulatory molecule inhibiting the proliferative response. Stimulating the T cell to divide via its IL 2 receptor by adding exogenous IL 2 produced high levels of proliferation but only low titers of IFN-gamma activity. In addition, irradiation of the clone eliminated the IFN-gamma release induced by IL 2 but did not affect the IFN-gamma release induced by antigen and Ia. Thus proliferation is not essential for IFN-gamma production and unlike antigen and Ia, IL 2 functions predominantly as a proliferative signal and not as a signal for factor release. Two T cell clones showed a dissociation of IFN-gamma production and proliferation. In one case, a clone that proliferated in response to both allogeneic and antigenic stimuli released IFN-gamma in response to antigen but failed to produce IFN-gamma in response to the allogeneic stimulus. A second clone that showed a strong proliferative response to pigeon cytochrome c but no proliferative response to a species variant of cytochrome c, tobacco hornworm moth (THWM) cytochrome c, produced IFN-gamma when stimulated with either of these antigens. Thus, the sensitivity of detecting activation of T cell clones as measured by the release of an individual lymphokine varies from one clone to another.  相似文献   

13.
A minor T cell determinant from pigeon cytochrome c, composed of residues 43 to 58 (p43-58), was synthesized along with a series of 48 analogs containing amino or carboxyl-terminal deletions or single amino acid substitutions. These peptides were analyzed functionally for their ability to elicit unique T cell populations on immunization of C57BL/10 mice and to stimulate a degenerate T cell clone capable of recognizing p43-58 in association with two different Ia molecules, A beta b:A alpha b and A beta d:A alpha d. These experiments allowed us to identify the residues in the determinant that are critical for T cell activation. Residues 50 and 52 had the dominant influence on T cell specificity, and residues 47, 48, 49, 51, and 53 had weak effects. Residues 46 and 54 were hardly recognized by the TCR at all, but appeared to influence the potency of the determinant by interacting with the Ia molecule. Finally, substitutions at positions 55 to 58 had no effect, but removal of these residues reduced the potency of the peptide, suggesting a contribution from the peptide backbone of this part of the molecule during T cell activation. An analysis of the spatial relationship of these dominant epitopic and agretopic residues suggests that this determinant does not assume a pure alpha-helical secondary structure when bound to the Ia molecule.  相似文献   

14.
The cells recognize a bimolecular ligand composed of a self Ia molecule and a fragment of foreign Ag that has been processed by an APC. The effect of self proteins on the processing and presentation of foreign Ag was examined in order to ascertain the mechanisms for competition between foreign and self Ag. How this competition can be overcome to allow an efficient immune response was also examined. Normal mouse serum proteins (NMS) compete for the processing and presentation of the foreign Ag bovine RNase by APC. This competition could have occurred at any of three levels in the APC: 1) Ag uptake, 2) Ag processing, or 3) the binding of Ag to an Ia molecule. No competition for either the uptake or the processing of RNase by self proteins could be demonstrated. However, self peptides do compete with foreign Ag by binding directly to Ia molecules, as has been shown previously. Thus, the observed inhibition by NMS of Ag presentation occurred because of competition for binding to the Ia molecule. We hypothesized that during the generation of an immune response this competition is overcome by enhanced uptake of foreign Ag. To test this, we compared the ability of NMS to compete for the presentation of RNase when it entered the APC via fluid-phase pinocytosis or through receptor-mediated uptake via the mannose receptor. When the RNase entered the APC through the mannose receptor, the ability of NMS to compete was dramatically reduced. Thus, self proteins constitutively compete for the presentation of foreign Ag at the level of binding to an Ia molecule, and this competition can be overcome by receptor-mediated uptake of the Ag.  相似文献   

15.
The carboxyamidated wFwLL peptide was used as a core ligand to probe the structural basis for agonism versus inverse agonism in the constitutively active ghrelin receptor. In the ligand, an efficacy switch could be built at the N terminus, as exemplified by AwFwLL, which functioned as a high potency agonist, whereas KwFwLL was an equally high potency inverse agonist. The wFw-containing peptides, agonists as well as inverse agonists, were affected by receptor mutations covering the whole main ligand-binding pocket with key interaction sites being an aromatic cluster in transmembrane (TM)-VI and -VII and residues on the opposing face of TM-III. Gain-of-function in respect of either increased agonist or inverse agonist potency or swap between high potency versions of these properties was obtained by substitutions at a number of positions covering a broad area of the binding pocket on TM-III, -IV, and -V. However, in particular, space-generating substitutions at position III:04 shifted the efficacy of the ligands from inverse agonism toward agonism, whereas similar substitutions at position III: 08, one helical turn below, shifted the efficacy from agonism toward inverse agonism. It is suggested that the relative position of the ligand in the binding pocket between this "efficacy shift region" on TM-III and the opposing aromatic cluster on TM-VI and TM-VII leads either to agonism, i.e. in a superficial binding mode, or it leads to inverse agonism, i.e. in a more profound binding mode. This relationship between different binding modes and opposite efficacy is in accordance with the Global Toggle Switch model for 7TM receptor activation.  相似文献   

16.
17.
Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3 (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency of the SEC3 variants correlated with enhanced binding without any optimum in the binding range covered by native TCR ligands. Comparable studies using anti-TCR antibodies of known affinity confirmed these observations. By comparing the biological potency of the two sets of ligands, we found a significant correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength.  相似文献   

18.
It has been widely accepted that T cell activation requires two signals; one from the binding of the antigen/major histocompatibility complex to the T-cell receptor (TCR)/CD3 complex and the other from the interaction between a surface molecule on antigen presenting cells and its receptor on T cells. The second signal is considered as co-stimulatory and the B7/CD28 pair has been well studied as a prototype. Recently 4-1BB (CD137) has been characterized as another co-stimulatory molecule for T cell activation. However, unlike the CD28/B7 pair, 4-1BB and its ligand 4-1BBL constitute a member of the tumor necrosis factor (TNF) receptor/TNF pair superfamily. The signaling mechanism of 4-1BB has not been revealed in detail. To investigate whether 4-1BB takes the signaling pathways analogous to those for TNF receptors, we generated polyclonal antibodies against human 4-1BB and 4-1BBL and established stable transfectants of the receptor and the ligand with a high level of cell surface expression. Over-expression of h4-1BB was found to result in the activation of c-Jun N-terminal kinase (JNK) in the human embryonic kidney cell line 293. In T cells, it has been previously demonstrated that JNK activation requires dual signals such as the ligation of TCR/CD3 complex plus CD28 co-stimulation or PMA plus ionomycin. The JNK activation by 4-1BB in Jurkat T cells was also found to require stimulation of the TCR/CD3 complex, consistent with the notion that 4-1BB functions as a co-stimulatory molecule for T cell activation.  相似文献   

19.
Two roles for Ia in antigen-specific T lymphocyte activation   总被引:1,自引:0,他引:1  
In this study we examined the mechanism by which a PPD-specific murine T cell hybridoma, 8B2, recognized PPD associated with antigen-presenting cells (APC) in a manner genetically restricted by I-Ad. It was found that PPD-pulsed APC that were glutaraldehyde-fixed and treated with anti-Ia monoclonal antibody (abbreviated as PGM) were unable to stimulate the 8B2 T cells, as expected, due to inhibition caused by antibody binding to the Ia. However, addition of non-antigen-treated, glutaraldehyde-fixed APC (abbreviated as G) to cultures containing 8B2 T cells and PGM restored T cell activation, as determined by IL 2 production. This second non-antigen-specific function provided by the additional APC, G, was attributed to Ia and could be substituted by APC plasma membranes and by soluble membrane extracts. Genetic restriction analysis in which a variety of Ia-positive and Ia-negative cell lines and B cell blasts from different mouse strains were used as PGM or as G showed that each APC provided different Ia determinants that were specifically recognized by the T cells. PGM cells had to express I-Ad in order to present the PPD determinant, whereas the non-antigen-specific function was specific for I-Ad or I-Ab. These results suggest that the anti-Ia antibody does not interfere with the PPD/I-Ad-specific determinant bound by the antigen-specific T cell receptor, but prevents a second non-antigen-specific interaction with another region of the Ia molecule, which is provided by G. These two roles for Ia (antigen-specific and non-antigen-specific) were also found for activation of normal polyclonal PPD-specific T cell responses; thus they are not unique to the 8B2 T cell, but are generally applicable. In addition, T cell interactions with PGM and with G each provide different intracellular activation signals. This was determined by substituting the PGM or the G with either the tumor promoter phorbol 12-myristate 13-acetate (PMA) or the Ca++ ionophore, ionomycin. It was found that 8B2 T cells cultured with PGM and ionomycin, but not with PGM and PMA, were activated for IL 2 production. Neither PMA nor ionomycin in conjunction with G resulted in T cell activation. Taken together, these results indicate that 8B2 T cell activation involves APC Ia antigens in two different ways: one is to contribute to the presentation of the foreign PPD antigen, and a second is a non-antigen-specific Ia-T cell interaction necessary to provide additional intracellular activation signals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
APRIL, a proliferation-inducing ligand, is a member of the tumor necrosis factor (TNF) family that is expressed by various types of tumors and influences their growth in vitro and in vivo. Two receptors, transmembrane activator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), bind APRIL, but neither is essential for the tumor-promoting effects, suggesting that a third receptor exists. Here, we report that APRIL specifically binds to heparan sulfate proteoglycans (HSPG) on the surface of tumor cells. This binding is mediated by the heparin sulfate side chains and can be inhibited by heparin. Importantly, BCMA and HSPG do not compete, but can bind APRIL simultaneously, suggesting that different regions in APRIL are critical for either interaction. In agreement, mutation of three lysines in a putative heparin sulfate-binding motif, which is not part of the TNF fold, destroys interaction with HSPG, while binding to BCMA is unaffected. Finally, whereas interaction of APRIL with HSPG does not influence APRIL-induced proliferation of T cells, it is crucial for its tumor growth-promoting activities. We therefore conclude that either HSPG serve as a receptor for APRIL or that HSPG binding allows APRIL to interact with a receptor that promotes tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号