首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further investigate the effects of airway cartilage softening on static and dynamic lung mechanics, 11 rabbits were treated with 100 mg/kg iv papain, whereas 9 control animals received no pretreatment. Lung mechanics were studied 24 h after papain injection. There was no significant difference in lung volumes, lung pressure-volume curves, or chest wall compliance. Papain-treated rabbits showed increased lung resistance: 91 +/- 63 vs. 39 +/- 22 cmH2O X l-1 X s (mean +/- SD; P less than 0.05), decreased maximal expiratory flows at all lung volumes, and preserved density dependence of maximal expiratory flows. We conclude that increased airway wall compliance is probably the mechanism that limited maximal expiratory flow in this animal model. In addition the increased lung resistance suggests that airway cartilage plays a role in the regulation of airway caliber during quiet tidal breathing.  相似文献   

2.
Lung compliance is generally considered to represent a blend of surface and tissue forces, and changes in compliance in vivo are commonly used to indicate changes in surface forces. There are, however, theoretical arguments that would allow contraction of airway smooth muscle to affect substantially the elasticity of the lung. In the present study we evaluated the role of conducting airway contraction on lung compliance in vivo by infusing methacholine (MCh) at a constant rate into the bronchial circulation. With a steady-state MCh infusion of 2.4 micrograms/min into the bronchial perfusate (perfusate concentration = 0.7 microM), there was an approximate doubling of lung resistance and a 50% fall in dynamic compliance. There were also significant decreases in chord compliance measured from the quasi-static pressure-volume curves and in total lung capacity and residual volume. When the same infusion rate was administered into the pulmonary artery, no changes in lung mechanics were observed. These results indicate that the conducting airways may have a major role in regulating lung elasticity. This linkage between airway contraction and lung compliance may account for the common observation that pharmacological challenges given to the lung usually result in similar changes in lung compliance and airway conductance. Our results also suggest the possibility that the lung tissue resistance, which dominates the measurement of lung resistance in many species, might in fact reflect the physical properties of conducting airways.  相似文献   

3.
Studies of the anesthetic effects on the airway often use pulmonary resistance (RL) as an index of airway caliber. To determine the effects of the volatile anesthetic, halothane, on tissue and airway components of RL, we measured both components in excised canine lungs before and during halothane administration. Tissue resistance (Rti), airway resistance (Raw), and dynamic lung compliance (CL, dyn) were determined at constant tidal volume and at ventilatory frequencies ranging from 5 to 45 min-1 by an alveolar capsule technique. Halothane decreased RL at each breathing frequency by causing significant decreases in both Raw and Rti but did not change the relative contribution of Rti to RL at any frequency. Halothane increased CL,dyn at each breathing frequency, although there was little change in the static pressure-volume relationship. The administration of isoproterenol both airway and tissue components of RL; it may act by relaxing the contractile elements in the lung. Both components must be considered when the effects of volatile anesthetics on RL are interpreted.  相似文献   

4.
Mechanics of collateral channels during high-frequency oscillatory ventilation (HFOV) were assessed in eight anesthetized dogs, using a modification of Hilpert's technique. Base-line functional residual capacity was measured with a body plethysmograph, with inspiratory efforts induced by phrenic nerve stimulation. The resistance (Rcoll) and time constant (Tcoll) of collateral channels at five lung volumes were measured during HFOV and positive end-expiratory pressure (PEEP). Rcoll and Tcoll were significantly higher during HFOV (P less than 0.001); the differences did not correlate with resting lung volumes. The calculated static compliance of the wedged segment was similar during HFOV and PEEP (P greater than 0.005). Mean pressures measured in small airways during HFOV corresponded to the midline between the inflation and deflation limbs of the static pressure-volume curves, indicating similar pressure-volume characteristics of the respiratory system during HFOV and static conditions. We conclude that HFOV increases resistance to gas flow through collateral channels but that this pathway may still be important in gas exchange.  相似文献   

5.
During breathing the relatively high chest wall-to-lung compliance ratio of the newborn favors distortion of the respiratory system. In this study we have examined the effect of lung deformation, generated by a hydrostatic pleural surface pressure gradient, on the static (Cstat) and dynamic (Cdyn) compliance of the isolated newborn piglet lung. Seven lungs from piglets 2-7 days old have been studied in a saline-filled plethysmograph. Static pressure-volume (PV) curves were obtained by changing the volume a known amount and measuring the corresponding changes in transpulmonary pressure. Dynamic PV curves were obtained by ventilating the lung at a fixed pressure and at 20 cycles/min. These experiments were repeated in an air plethysmograph on the undeformed lung. Lung volume history was standardized prior to each maneuver by three inflations to 20-25 cmH2O. Lung collapse was avoided by applying an end-expiratory load equal to the transpulmonary pressure at functional residual capacity. Cstat was not significantly different between the deformed and undeformed lung (P greater than 0.05). Cdyn was less than Cstat in both cases (P less than 0.025) and was reduced further by deformation (P less than 0.05). We conclude that 1) peripheral airway obstruction or the viscoelastic properties of the piglet lung, or both, decrease Cdyn, and 2) deformation increases the external (PV) respiratory work by further decreasing Cdyn.  相似文献   

6.
CO(2) regulation of lung compliance is currently explained by pH- and CO(2)-dependent changes in alveolar surface forces and bronchomotor tone. We hypothesized that in addition to, but independently of, those mechanisms, the parenchyma tissue responds to hypercapnia and hypocapnia by relaxing and contracting, respectively, thereby improving local matching of ventilation (Va) to perfusion (Q). Twenty adult rats were slowly ventilated with modified Krebs solution (rate = 3 min(-1), 37 degrees C, open chest) to produce unperfused living lung preparations free of intra-airway surface forces. The solution was gassed with 21% O(2), balance N(2), and CO(2) varied to produce alveolar hypocapnia (Pco(2) = 26.1 +/- 2.4 mmHg, pH = 7.56 +/- 0.04) or hypercapnia (Pco(2) = 55.0 +/- 2.3 mmHg, pH = 7.23 +/- 0.02). The results show that lung recoil, as indicated from airway pressure measured during a breathhold following a large volume inspiration, is reduced approximately 30% when exposed to hypercapnia vs. hypocapnia (P < 0.0001, paired t-test), but stress relaxation and flow-dependent airway resistance were unaltered. Increasing CO(2) from hypo- to hypercapnic levels caused a substantial, significant decrease in the quasi-static pressure-volume relationship, as measured after inspiration and expiration of several tidal volumes, but hysteresis was unaltered. Furthermore, addition of the glycolytic inhibitor NaF abolished CO(2) effects on lung recoil. The results suggest that lung parenchyma tissue relaxation, arising from active elements in response to increasing alveolar CO(2), is independent of (and apparently in parallel with) passive tissue elements and may actively contribute to Va/Q matching.  相似文献   

7.
Airway anesthesia with aerosolized lidocaine has been associated with an increase in minute ventilation (VE) during CO2 inhalation. The increase in VE may be due to increased neuromuscular output or decreased mechanical load on breathing. To evaluate this we measured VE, breathing pattern, mouth occlusion pressure, and lung mechanics in 20 normal subjects during room-air breathing and then inhalation of 6% CO2-94% O2, before and after airway anesthesia. Measurements of lung mechanics included whole-lung resistance, dynamic and static compliance, and functional residual capacity. Airway anesthesia had no detectable effect on any measurements during room-air breathing. During CO2 inhalation, airway anesthesia produced increases in VE and mean inspiratory flow rate (VT/TI) and more negative inspiratory pleural pressure but had no detectable effect on lung mechanics or mouth occlusion pressure. Pleural pressure was more negative during the latter 25% of inspiration. We concluded that airway receptors accessible to airway anesthesia play a role in determining neuromuscular output during CO2 inhalation.  相似文献   

8.
In the current study, we hypothesize that senescent-dependent changes between airway and lung parenchymal tissues of C57BL/6J (B6) mice are not synchronized with respect to altered lung mechanics. Furthermore, aging modifications in elastin fiber and collagen content of the airways and lung parenchyma are remodeling events that differ with time. To test these hypotheses, we performed quasi-static pressure-volume (PV) curves and impedance measurements of the respiratory system in 2-, 20-, and 26-mo-old B6 mice. From the PV curves, the lung volume at 30 cmH(2)O pressure (V(30)) and respiratory system compliance (Crs) were significantly (P < 0.01) increased between 2 and 20 mo of age, representing about 80-84% of the total increase that occurred between 2 and 26 mo of age. Senescent-dependent changes in tissue damping and tissue elastance were analogous to changes in V(30) and Crs; that is, a majority of the parenchymal alterations in the lung mechanics occurred between 2 and 20 mo of age. In contrast, significant decreases in airway resistance (R) occurred between 20 and 26 mo of age; that is, the decrease in R between 2 and 20 mo of age represented only 29% (P > 0.05) of total decrease occurring through 26 mo. Morphometric analysis of the elastic fiber content in lung parenchyma was significantly (P < 0.01) decreased between 2 and 20 mo of age. To the contrary, increased collagen content was significantly delayed until 26 mo of age (P < 0.01, 2 vs. 26 mo). In conclusion, our data demonstrate that senescent-dependent changes in airway and lung tissue mechanics are not synchronized in B6 mice. Moreover, the reduction in elastic fiber content with age is an early lung remodeling event, and the increased collagen content in the lung parenchyma occurs later in senescence.  相似文献   

9.
Injury to the bronchial vasculature may contribute to liquid and solute leakage into the lung during noncardiac pulmonary edema. The purpose of this study was to measure changes in hemodynamics, pulmonary mechanics, extravascular lung water, and lung morphometry after selectively injuring the bronchial vasculature in anesthetized sheep. In two groups of seven sheep, we injected oleic acid (0.1 ml/kg) or normal saline directly into the bronchoesophageal artery. We measured systemic and pulmonary arterial pressures, cardiac output, oxygen saturation, pulmonary resistance and compliance, and lung volumes before and 1 and 4 h after injection. The lungs were removed for measurement of extravascular water, histology, and morphometry. Four hours after injection of oleic acid, cardiac output decreased but pulmonary arterial pressure did not change. In addition, pulmonary resistance increased and dynamic compliance and vital capacity decreased. Extravascular lung water was slightly but significantly greater in the oleic acid group. Histological examination showed interstitial edema and leukocytes in airway walls and sloughing of bronchial epithelium but little or no alveolar edema. Morphometric analysis showed significant thickening of airway walls. We conclude that direct injury to the bronchial vasculature increases lung resistance, decreases dynamic compliance, and increases extravascular lung water by the accumulation of an inflammatory infiltrate in airway walls.  相似文献   

10.
The causes of respiratory distress in O2 toxicity are not well understood. The purpose of this study was to better define the airway abnormalities caused by breathing 100% O2. Sheep were instrumented for measurements of dynamic compliance (Cdyn), functional residual capacity by body plethysmography (FRC), hemodynamics, and lung lymph flow. Each day Cdyn and FRC were measured before, during, and after the application of 45 min continuous positive airway pressure (CPAP) at 15 cmH2O. The amount of aerosol histamine necessary to reduce Cdyn 35% from baseline (ED35) was measured each day as was the response to aerosol metaproterenol. Cdyn decreased progressively from 0.083 +/- 0.005 (SE) 1/cmH2O at baseline to 0.032 +/- 0.004 l/cm H2O at 96 h of O2. Surprisingly, FRC did not decrease (1,397 +/- 153 ml at baseline vs. 1,523 +/- 139 ml at 96 h). The ED35 to histamine did not vary among days or from air controls. Metaproterenol produced a variable inconsistent increase in Cdyn. We also measured changes in Cdyn during changes in respiratory rate and static pressure-volume relationships in five other sheep. We found a small but significant frequency dependence of compliance and an increase in lung stiffness with O2 toxicity. We conclude that in adult sheep O2 toxicity reduces Cdyn but does not increase airway reactivity. The large reduction in Cdyn in O2 toxicity results from processes other than increased airway reactivity or reduced lung volume, and Cdyn decreases before the development of lung edema.  相似文献   

11.
A system was developed to control arterial O2 and CO2 partial pressure (Pao2, and Paco2) simultaneously and independently of each other. The system makes changes in inspired fractional concentration of O2 and CO2 based on values for end-tidal O2 and CO2 partial pressure. The system was applied in 23 normal subjects. In attempts to maintain a Pao2 of 90 Torr and a Paco2 of 40 Torr, arterial blood gases were 91.1 +/- 6.5 (SD) Torr for Pao2 and 41.2 +/- 3.2 Torr for Paco2. In attempts to maintain a Pao2 of 40 Torr and a Paco2 of 40 Torr, arterial blood gases were 40.4 +/- 3.9 Torr for Pao2 and 38.9 +/- 2.5 Torr for Paco2. In attempts to maintain a Pao2 of 90 Torr and a Paco2 of 55 Torr, arterial blood gases were 98.1 +/- 11.5 Torr for Pao2 and 52.8 +/- 3.4 Torr for Paco2. Coefficients of variations ranged from 7.1 to 11.7% for Pao2 and 6.4 to 7.8% for Paco2.  相似文献   

12.
Quasi-static pressure-volume (P-V) curves in normal seated human subjects were determined with pressure at the airway opening (Pa0) set below (negative pressure), above (positive pressure), or equal to ambient pressure. Dynamic compliance (Cdyn) during controlled continuous negative pressure breathing (CNPB) was also studied. Quasi-static P-V curves at negative pressure were decreased in slope, reflected a decrease in total lung capacity, and intersected the P-V curve obtained at ambient Pa0. At positive pressure the P-V curves showed an increase in slope and an increase in total lung capacity. During CNPB a fall in Cdyn was found. The fall in Cdyn was rapid and persisted for the duration of CNPB. Cdyn promptly returned to control levels when Pa0 was adjusted to ambient pressure.  相似文献   

13.
Correlation between transcutaneous and arterial CO2 partial pressure (Ptcco2, and Paco2) under normal and hemorrhagic shock conditions was evaluated in rabbits. Under normal conditions the Paco2-to-Ptcco2 least-squares regression line had a slope of 1.03 an intercept of 4.57 Torr, and a root mean variance of +/- 3.79 Torr. Under hemorrhagic shock conditions the slope remained similar, but the intercept increased, producing a significant difference between arterial and transcutaneous values. The correlation line shifts to the left so that, for a given Paco2, the Ptcco2 value increases. The transcutaneous response time (90%) under conditions produced by breathing 10% CO2 lagged 2.8 +/- 1.4 min behind that of the breathing 10% CO2 lagged 2.8 +/- 1.4 min behind that of the Paco2. The difference between transcutaneous and arterial CO2 observed during hemorrhagic shock and the lag in transcutaneous response time can be altered by topical application of dimethyl sulfoxide, by altering both flow and permeability. These results indicate that good Ptcco2-to-Paco2 correlation exists under normal conditions and that hemorrhagic shock will produce tissue CO2 accumulation and therefore higher than arterial Ptcco2 values.  相似文献   

14.
Mice have been widely used in immunologic and other research to study the influence of different diseases on the lungs. However, the respiratory mechanical properties of the mouse are not clear. This study extended the methodology of measuring respiratory mechanics of anesthetized rats and guinea pigs and applied it to the mouse. First, we performed static pressure-volume and maximal expiratory flow-volume curves in 10 anesthetized paralyzed C57BL/6 mice. Second, in 10 mice, we measured dynamic respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow before and after methacholine challenge. Averaged total lung capacity and functional residual capacity were 1.05 +/- 0.04 and 0.25 +/- 0.01 ml, respectively, in 20 mice weighing 22.2 +/- 0.4 g. The chest wall was very compliant. In terms of vital capacity (VC) per second, maximal expiratory flow values were 13.5, 8.0, and 2.8 VC/s at 75, 50, and 25% VC, respectively. Maximal flow-static pressure curves were relatively linear up to pressure equal to 9 cm H(2)O. In addition, methacholine challenge caused significant decreases in respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow, indicating marked airway constriction. We conclude that respiratory mechanical parameters of mice (after normalization with body weight) are similar to those of guinea pigs and rats and that forced expiratory maneuver is a useful technique to detect airway constriction in this species.  相似文献   

15.
Desmin is a structural protein that is expressed in smooth muscle cells of both airways and alveolar ducts. Therefore, desmin could be well situated to participate in passive and contractile force transmission in the lung. We hypothesized that desmin modulates lung compliance, lung recoil pressure, and airway contractile response. To test this hypothesis, respiratory system complex impedance (Zin,rs) at different positive end-expiratory pressure (PEEP) levels and quasi-static pressure-volume data were obtained in desmin-null and wild-type mice at baseline and during methacholine administration. Airways and lung tissue properties were partitioned by fitting Zin,rs to a constant-phase model. Relative to controls, desmin-null mice showed 1) lower values for lung stiffness and recoil pressure at baseline and induced airway constriction, 2) greater negative PEEP dependence of H and airway resistance under baseline conditions and cholinergic stimulation, and 3) airway hyporesponsiveness. These results demonstrate that desmin is a load-bearing protein that stiffens the airways and consequently the lung and modulates airway contractile response.  相似文献   

16.
Factors causing changes in pulmonary resistance and dynamic compliance with immunoglobulin (Ig) E anaphylaxis in spontaneously breathing rabbits were assessed in ventilated rabbits using tantalum bronchography and wet-to-dry wt ratios. Ventilated rabbits demonstrated changes in resistance and compliance similar to spontaneously breathing rabbits. Chlorpheniramine pretreatment prevented increases in resistance but not decreases in compliance. Anaphylaxis constricted small (less than 1 mm) airways 20.9 +/- 16.0% (mean +/- SD) and intermediate (between 1 and 3 mm) airways 21.8 +/- 19.8%. Chlorpheniramine (10 mg/kg) prevented small airway changes and attenuated those in intermediate airways. Chlorpheniramine prevented histamine-induced constriction of small (23.6 +/- 15.7%) and intermediate (17.6 +/- 15.0%) airways. Lung wet-to-dry wt ratios were unchanged. Changes in resistance and compliance during rabbit IgE anaphylaxis are not due to changes in tidal volume or frequency. Histamine, via H1 receptors, is the principal mediator of pulmonary resistance increases but not dynamic compliance reductions. Chlorpheniramine-sensitive increases in resistance are caused by constrictions of intermediate and small airways, whereas the chlorpheniramine-resistant decrease in compliance is not caused directly by constriction of the smallest measurable airways (0.25 mm) or changes in lung water.  相似文献   

17.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   

18.
Flow limitation in liquid-filled lungs is examined in intact rabbit experiments and a theoretical model. Flow limitation ("choked" flow) occurs when the expiratory flow reaches a maximum value and further increases in driving pressure do not increase the flow. In total liquid ventilation this is characterized by the sudden development of excessively negative airway pressures and airway collapse at the choke point. The occurrence of flow limitation limits the efficacy of total liquid ventilation by reducing the minute ventilation. In this paper we investigate the effects of liquid properties on flow limitation in liquid-filled lungs. It is found that the behavior of liquids with similar densities and viscosities can be quite different. The results of the theoretical model, which incorporates alveolar compliance and airway resistance, agrees qualitatively well with the experimental results. Lung compliance and airway resistance are shown to vary with the perfluorocarbon liquid used to fill the lungs. Surfactant is found to modify the interfacial tension between saline and perfluorocarbon, and surfactant activity at the interface of perfluorocarbon and the native aqueous lining of the lungs appears to induce hysteresis in pressure-volume curves for liquid-filled lungs. Ventilation with a liquid that results in low viscous resistance and high elastic recoil can reduce the amount of liquid remaining in the lungs when choke occurs, and, therefore, may be desirable for liquid ventilation.  相似文献   

19.
The influence of OKY 1581, a thromboxane synthase inhibitor, on airway responses to arachidonic acid and endoperoxide, [prostaglandin (PG) H2], were investigated in anesthetized, paralyzed, mechanically ventilated cats. Intravenous injections of arachidonic acid and PGH2 caused dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic and static compliance. OKY 1581 significantly decreased airway responses to arachidonic acid but not to PGH2. Sodium meclofenamate, a cyclooxygenase inhibitor, abolished airway responses to arachidonic acid but had no effect on airway responses to PGH2. OKY 1581 or meclofenamate has no effect on airway responses to PGF2 alpha, PGD2, or U 46619, a thromboxane mimic. In microsomal fractions from the lung, OKY 1581 inhibited thromboxane formation without decreasing prostacyclin synthesis or cyclooxygenase activity. These studies show that OKY 1581 is a selective thromboxane synthesis inhibitor in the cat lung and suggest that a substantial part of the bronchoconstrictor response to arachidonic acid is due to thromboxane A2 formation. Moreover, the present data suggest that airway responses to endogenously released and exogenous PGH2 are mediated differently and that a significant part of the response to exogenous PGH2 may be due to activation of an endoperoxide/thromboxane receptor, since responses to PGH2 are blocked by the thromboxane receptor antagonist SQ 29548.  相似文献   

20.
To test the hypothesis that hyaline membrane disease (HMD) has a multifactorial etiology in which barotrauma plays a major role, we compared the immediate institution of high-frequency oscillatory ventilation (HFOV; 15 Hz, n = 5) with positive-pressure ventilation with positive end-expiratory pressure (PPV; n = 7) in premature baboons (140-days gestation) with HMD. Measurements of ventilation settings and physiological parameters were obtained and arterial-to-alveolar O2 (PaO2-to-PAO2) ratio and oxygenation index [(PaO2/PAO2)-to-mean airway pressure ratio (IO2)] were calculated. At death (24 h), static pressure-volume (PV) curves were performed, and phospholipids (PL) and platelet-activating factor (PAF) were measured in lung lavage fluid. Morphological inflation patterns were analyzed using a panel of standards. By design, mean airway pressure was initially higher (19 vs. 13 cmH2O) in the HFOV animals. PaO2-to-PAO2 ratio and IO2 progressively deteriorated in the PPV animals and then stabilized at significantly lower levels than with HFOV. PV curves from HFOV animals had significant increases in lung volume at maximum distending pressure, deflation volume at 10 cmH2O, and hysteresis area compared with PPV, which showed no hysteresis. Seven of seven PPV and only one of five HFOV animals had morphological findings of HMD. PL amount and composition in both groups were consistent with immaturity, even though the quantity was significantly greater in the PPV group. PAF was present (greater than or equal to 0.10 pmol) in six of seven PPV and in the only HFOV animal with HMD. We conclude that HFOV protected PL-deficient premature baboons from changes in gas exchange, lung mechanics, and morphology typical of HMD in this model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号