首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutability induced by dioxidine in E. coli cells has been shown to be stringently dependent on a function of chromosomal umuC+ gene. Suppression of an umuC mutation by plasmids pKM101 or ColIb, restoring the dioxidine induced mutability, proves the possibility of umuC gene functional complementation by the plasmid muc+ genes.  相似文献   

2.
We have used the lacZ reversion assay to study the mutation spectra induced by the Escherichia coli chromosomal umuDC operon and of its two plasmid-borne analogues impCAB and mucAB following exposure of cells to UV light and methyl methane-sulfonate (MMS). We have shown that the impCAB, mucAB and umuDC operons all produce a similar response to UV light which results almost exclusively in AT GC transitions. However, we found that the three operons produced different responses to alkylating agents. We found that with MMS the chromosomal umuDC operon produced almost exclusively AT GC transitions, whilst both mucAB and impCAB produced predominantly transversions. In the case of the impCAB operon the mutation spectrum contained more AT TA than GC TA transversions; this balance was reversed with mucAB. The effect of the copy number of the error-prone DNA repair operons upon the mutagenic spectra was also studied. The results obtained suggest that the copy number of the imp operon does not greatly affect the specificity of base substitutions observed. However, an increase in the copy number of the umuDC operon greatly affected the specificity of base substitution, such that virtually no transitions were produced and the spectrum was dominated by GC/AT TA transversions. It appears that the three error-prone DNA repair operons impCAB, mucAB and umuDC, despite showing strong structural and functional homologies, can display major differences in the spectrum of base changes induced during mutagenesis. We propose that the type of misincorporation/chain extension which DNA polymerase III is allowed to synthesize on a damaged DNA template is extremely sensitive to both the amount and type of error-prone repair proteins present. The modulation of these events by the different proteins can result in widely different mutagenic changes in the repaired DNA.  相似文献   

3.
An Escherichia coli strain bearing the dnaQ49 mutation, which results in a defective s subunit of DNA polymerase III, and carrying the lexA71 mutation, which causes derepression of the SOS regulon, is totally unable to maintain high-copy-number plasmids containing the umuDC operon. The strain is also unable to maintain the pAN4 plasmid containing a partial deletion of the umuD gene but retaining the wild-type umuC gene. These results suggest that a high cellular level of UmuC is exceptionally harmful to the defective DNA polymerase III of the dnaQ49 mutant. We have used this finding as a basis for selection of new plasmid umuC mutants. The properties of two such mutants, bearing the umuC61 or umuC95 mutation, are described in detail. In the umuC122:: Tn 5 strain harbouring the mutant plasmids, UV-induced mutagenesis is severely decreased compared to that observed with the parental umuDC + plasmid. Interestingly, while the frequency of UV-induced GC AT transitions is greatly reduced, the frequency of AT TA transversions is not affected. Both mutant plasmids bear frameshift mutations within the same run of seven A residues present in umuC +; in umuC61 the run is shortened to six A whereas in umuC95 is lengthened to eight A. We have found in both umuC61 and umuC95 that translation is partially restored to the proper reading frame. We propose that under conditions of limiting amounts of UmuC, the protein preferentially facilitates processing of only some kinds of UV-induced lesions.  相似文献   

4.
Extreme resistance in cultivated potato (Solanum tuberosum) to potato viruses Y and A (PVY and PVA) conditioned by the presence of Ry genes introduced from Solanum stoloniferum was described by Cockerham (1970). Cockerham detailed a number of genes which controlled a variety of reactions, including extreme resistance to both viruses (i.e. little or no visible reaction of plants and no viral replication following graft and manual inoculation) controlled by gene Ry sto. In the present study, cvs Pirola and Barbara, which contain a Ry gene, were found to have extreme resistance to PVY isolates from the ordinary (PVY°), veinal necrosis (PVYN) and potato tuber necrotic ringspot (PVYNTN) subgroups, and PVA. The inheritance of this phenotype was examined in seedling progenies obtained by crossing Barbara and Pirola with susceptible cultivars. Segregation data for resistance to PVY and PVA in a progeny involving cv Pirola best fitted a genetical model of one gene controlling extreme resistance to both PVY and PVA, although the possibility that there are two genes, each controlling resistance to one virus but closely linked, cannot be excluded. Segregation data from progenies involving cv Barbara best fitted a genetical model in which there are two independent genes, one controlling extreme resistance to PVA and PVY and a second gene controlling extreme resistance to PVA but not to PVY. This previously unrecognised gene conferring extreme resistance to PVA only, should be given the notation Ra in keeping with nomenclature used for other resistance genes.  相似文献   

5.
Summary DNA base sequence changes induced by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis have been determined for the Escherichia coli gpt gene stably incorporated in a chromosome of Chinese hamster ovary cells and in the chromosome of both growing and starving E. coli cells, instead of on a plasmid as in most previous studies. In the three cases, nearly all mutations were G: C to A: T transitions, with a 2-to 4-fold higher mutation rate, compared to other sites, at guanines flanked on the 5 side by another guanine. Mutagenic hot spots in these experiments were less prominent than in published results for MNNG mutagenesis of gpt and of other genes. A suggested explanation involves repair of O6meG. At low levels of mutagenic products, most are repaired and even small differences in the repair rates leads to large differences in the relative amounts of residual O6meG at various sites; in contrast, at high levels of mutagenic products there is little effect of repair on the distribution.Abbreviations MNNG N-methyl-N-nitro-N-nitrosoguanidine - MNU N-methyl-N-nitrosourea - O6meG O6-methylguanine - N7meG N7-methylguanine - CHO Chinese hamster ovary  相似文献   

6.
Summary Using disomic chromosome substitution lines based on the susceptible wheat cultivar Chinese Spring, loose smut resistance of wheat cultivars Hope and Thatcher was shown to be conferred in each case by a single dominant major gene carried on chromosome 7 A (Hope) or 7 B (Thatcher). Partial resistance was determined by genes on an additional eight Hope or seven Thatcher chromosomes, and similarities were evident between the partial resistance genotypes ofHope and Thatcher. Chinese Spring exhibited a mean infection value of approximately 50%, indicating a significant level of partial resistance, which was found to be due, in part, to genes on the homoeologous chromosome arms 1 As, 1 Es and 1 Ds, and to cytoplasmic genes. Substitution of the Chinese Spring nucleus into the cytoplasm of Aegilops squarrosa, Ae. variabilis or Ae. mutica resulted in increased susceptibility to Ustilago tritici. Several alloplasmic lines of the resistant wheat cultivars Selkirk and Chris exhibited race-specific susceptibility to U. tritici.  相似文献   

7.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

8.
Summary The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr +) and excision-repair-deficient (exr ) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr + strain and 24 from the exr strain, were characterized by sequence analysis. In two mutants obtained from the exr + strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr + strain, 22 (76%) were GCAT transitions, 3 (10%) ATTA transversions, 2 (6%) GCTA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GCAT transitions. Of the mutations in an exr background, 12 (48%) were GCAT transitions, 7 (28%) ATTA transversions, 5 (20%) GCTA transversions and 1 (4%) was a ATGC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.  相似文献   

9.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

10.
Summary The activity of the EcoK DNA restriction system of Escherichia coli reduces both the plating efficiency of unmodified phage and the transforming ability of unmodified pBR322 plasmid DNA. However, restriction can be alleviated in wild-type cells, by UV irradiation and expression of the SOS response, so that 103-to 104-fold increases in phage growth and fourfold increases in plasmid transformation occurred with unmodified DNA. Restriction alleviation was found to be a transient effect because induced cells, which initially failed to restrict unmodified plasmid DNA, later restricted unmodified phage . Although the SOS response was needed for restriction alleviation, constitutive SOS induction, elicited genetically with a recA730 mutation, did not alleviate restriction and UV irradiation was still needed. A hitherto unsuspected involvement of the umuDC operon in this alleviation of restriction is characterized and, by differential complementation, was separated from the better known role of umuDC in mutagenic DNA repair. The need for cleavage of UmuD for restriction alleviation was shown with plasmids encoding cleavable, cleaved, and non-cleavable forms of UmuD. However, UV irradiation was still needed even when cleaved UmuD was provided. The possibility that restriction alleviation occurs by a general inhibition of the EcoK restriction/modification complex was tested and discounted because modification of was not reduced by UV irradiation. An alternative idea, that restriction activity was competitively reduced by an increase in EcoK modification, was also discounted by the lack of any increase in the modification of Ral, a naturally undermodified phage. Other possible mechanisms for restriction alleviation are discussed.  相似文献   

11.
In the accompanying paper we demonstrated that endonuclease III-sensitive sites in theMAT andHML loci ofSaccharomyces cerevisiae are repaired by the Nucleotide Excision Repair (NER) pathway. In the current report we investigated the repair of endonuclease III sites, 6-4 photoproducts and cyclobutane pyrimidine dimers (CPDs) in arad14-2 point mutant and in arad14 deletion mutant. TheRAD14 gene is the yeast homologue of the human gene that complements the defect in cells from xeroderma pigmentosum (XP) patients belonging to complementation group A. In the point mutant we observed normal repair of endonuclease III sites (i.e. as wild type), but no removal of CPDs at theMAT andHML loci. Similar experiments were undertaken using the recently createdrad14 deletion mutant. Here, neither endonuclease III sites nor CPDs were repaired inMAT a orHMR a. Thus the point mutant appears to produce a gene product that permits the repair of endonuclease III sites, but prevents the repair of CPDs. Previously it was found that, in the genome overall, repair of 6-4 photoproducts was less impaired than repair of CPDs in the point mutant. The deletion mutant repairs neither CPDs nor 6-4 photoproducts in the genome overall. This finding is consistent with the RAD14 protein being involved in lesion recognition in yeast. A logical interpretation is that therad14-2 point mutant produces a modified protein that enables the cell to repair endonuclease III sites and 6-4 photoproducts much more efficiently than CPDs. This modified protein may aid studies designed to elucidate the role of the RAD14 protein in lesion recognition.  相似文献   

12.
The bean-pod weevil (BPW), Apion godmani Wagner, often causes heavy losses in crops of common bean (Phaseolus vulgaris L.). Farmers need resistant bean cultivars to minimize losses, cut production costs, stabilize seed yield, and reduce pesticide use and consequent health hazards. To design effective breeding methods, breeders need new and better sources of resistance and increased knowledge of their modes of inheritance. We therefore: (1) compared sources of resistance to BPW, (2) studied the inheritance of resistance, and (3) determined whether the sources possess similar or different genes for BPW resistance. The following sources of resistance, originating from the Mexican highlands, were evaluated for 3 years at INIFAP-Santa Lucía de Prias, Texcoco, Mexico: Amarillo 153, Amarillo 169, Hidalgo 58, J 117, Pinto Texcoco, Pinto 168, and Puebla 36. All except Puebla 36 were crossed with the susceptible cultivar Jamapa. Amarillo 153 and Puebla 36 were crossed with another susceptible cultivar, Bayo Mex. The parents, F1 hybrids, and F2 populations were evaluated for BPW damage in 1992. Backcrosses of the F1 of Jamapa/Pinto 168 to the respective susceptible and resistant parents were also evaluated in 1992. All seven resistant accessions were crossed in all possible combinations, excluding reciprocals. The resulting 21 F1 hybrids and 21 F2 populations were evaluated for BPW damage in 1994. J 117 had the highest level of resistance to BPW. Pinto Texcoco and Puebla 36 had the highest mean damage score of all seven sources of resistance. The F1 hybrids between susceptible parents and resistant sources were generally intermediate. Two genes segregating independently controlled the BPW resistance in each accession. One gene, Agm, has no effect when present alone, whereas the other gene, Agr, alone conferred intermediate resistance. When both genes were present, resistance to BPW was higher. Based on mean BPW damage scores, all 21 F1 hybrids and their F2 populations, derived from crosses among seven resistant accessions, were resistant. However, data from individual plant damage scores in F2 populations of Amarillo 169/Pinto 168 and Pinto Texcoco/Pinto 168 suggested that at least one gene in each of the three accessions was non-allelic. Data also indicated that Amarillo 169 had a dominant gene that conferred high levels of BPW resistance, irrespective of the alleles at the other locus; and that Pinto Texcoco and Pinto 168 possessed two different genes for intermediate resistance.  相似文献   

13.
Summary A transducing phage carrying glpDlacZ, glpR, and malT was isolated from a strain harboring a glpDlacZ fusion. Comparison of restriction endonuclease cleavage patterns of DNA isolated from this phage with that of the previously cloned malT region (Raibaud and Schwartz 1980) facilitated the construction of recombinant plasmids carrying different portions of the glpD-malT region. Results of minicell analysis and complementation studies showed that this region of the chromosome encodes at least five polypeptides. These included the previously identified glpD, glpR, and malT gene products. In addition, two new structural genes of the glp regulon (glpE and glpG) located between the glpD and glpR genes were identified. Hybrid plasmids carrying glpDlacZ and glpRlacZ fusions were constructed. Restriction endonuclease cleavage analysis of these two plasmids demonstrated that glpD and glpR are divergently transcribed  相似文献   

14.
A progeny consisting of 52 anther-derived doubled haploid barley lines from a F1 between the winter cultivars Igri (susceptible) and Triton (resistant) was tested for resistance to Rhynchosporium secalis. A dominant gene was detected and tagged by a series of cosegregating RFLP markers located in the proximal portion of the long arm of chromosome 3, close to the centromere. One of the cosegregating RFLP markers, cMWG680, was converted into a codominant sequence tagged site marker. Polymerase chain reaction analysis with this marker of a series of accessions carrying known resistance genes provided evidence that scald resistance in cv Triton is due to the presence of the Rh gene.  相似文献   

15.
Doubled haploid (DH) progeny from a cross between the scald susceptible barley (Hordeum vulgare L.) cultivar Ingrid and the resistant accession CI 11549 (Nigrinudum) was evaluated for resistance in the pathogen Rhynchosporium secalis (Oudem) J.J. Davis. Two linked and incompletely dominant loci confer resistance CI 11549 against isolate 4004. One is an allele at the complex Rrs1 locus on chromosome 3H close to the centromere; the other is located 22 cM distally on the long arm. The latter locus is designated Rrs4. In BC3-lines into Ingrid from CI 2222 (another Nigrinudum) resistance seems governed by one locus close to the telomeric region of chromosome 7H, probably allelic to Rrs2. In neither case did we find any trace of the recessive gene rh8 reported to be present in Nigrinudum. Various resistance donors of Ethiopian origin designated as Nigrinudum, Jet or Abyssinian were identical to a great extent with respect to markers, but differed in resistance to different isolates of scald or in barley yellow dwarf virus (BYDV) resistance. The implications for their use as differentials in scald tests and screening of germplasm collections are discussed.  相似文献   

16.
Summary Two bread wheat accessions, E5008 and E6160, have been genetically analysed for resistance genes effective against Indian cultures of stem rust races, 15C and 122. The inheritance of resistance to each race has been determined from the F1 and F2 of the crosses (resistant parents with the susceptible variety, Agra Local) and F2 progenies from the backcross to Agra Local. Tests have been performed to see if the two varieties carry common genes/s for resistance. The identity of the genes for resistance has been established from relevant crosses with single gene lines carrying known genes for resistance.A single dominant gene effective to race 15C in E5008 has been demonstrated to be Sr9b. Of the two recessive genes, each producing distinct infection types (0; and 1–3) against race 122, one gene has been inferred to be Sr12 and the second to be a hitherto undesignated gene.The resistance of E6160 against race 15C is controlled by two genes, one dominant and one recessive. The dominant gene has been identified as Sr9b. The recessive gene has been inferred to be a new gene. Similarly, a dominant gene effective against race 122 in E6160 has been observed to be different from those so far designated. In addition, the presence of modifier gene/s in the variety, E6160 has been suggested.  相似文献   

17.
Summary C-banding patterns of T. ovatum (Ae. ovata) and four T. aestivum cv Poros-T. ovatum chromosome addition lines are presented, and the added chromosomes of T. ovatum have been identified. Furthermore, nucleolar activity and powdery mildew resistance were analyzed in the Poros-ovatum addition lines and compared to that of T. ovatum and T. aestivum cv Poros. The addition lines II, III and IV and Poros were highly susceptible to powdery mildew isolates nos. 8 and 9, whereas the addition lines VI1 and VI2 showed high resistance. Even for an Ml-k virulent isolate, these two lines were highly resistant. By combining the cytological results and those of the powdery mildew analysis, the added chromosomes of T. ovatum can be excluded from responsibility for the high powdery mildew resistance of the addition lines VI1 and VI2. The same is true for a modified chromosome 6B, which is present in the Poros-ovataum addition lines II, III and VI. The high variation in C-banding pattern observed in the A-, B- and D-genome complement of the addition lines is believed to be the result of crossing different lines of T. aestivum instead of Poros alone. Thus, we cannot trace the powdery mildew resistance back to a specific chromosome.  相似文献   

18.
Summary Mutagenic repair in Escherichia coli after ultraviolet (UV) irradiation has previously been shown to require a function of DNA polymerase III. In contrast, no effect of incubating a polC temperature-sensitive strain at 42° has been found after gamma irradiation. Thus at present there is no direct evidence for the involvement of polymerase III in gamma ray mutagenesis. This could, however, merely reflect the stability of the premutational lesion during the period of polymerase III insufficiency such that mutagenic repair is resumed on the plate during subsequent incubation at permissive temperature.It was previously suggested that an inducible factor might interact with polymerase III to enable it to polymerise in an error-prone way in daughter strand gaps opposite non-coding lesions in the template strand. A temperature-resistant revertant (CM 792) of a temperature-sensitive polC strain (CM 731) has been isolated which has properties expected of a strain in which the polymerase III complex is no longer susceptible to the inducible co-factor. Its UV sensitivity, spontaneous mutation rate and mutagenic response to ethyl methanesulphonate are all normal or near normal, also the rates of mutation to prototrophy after gamma irradiation and to streptomycin resistance after UV. These latter mutations are believed to arise through constitutive mutagenic repair at sites in pre-existing DNA. In contrast, the rate of UV-induced mutation to prototrophy due to changes at ochre suppressor loci is greatly depressed and no Weigle-reactivation of bacteriophage T3 is observable; both these effects are believed to result from the action of inducible mutagenic repair in newly-replicated DNA. It is suggested that the 3 to 5 exnnuclease activity of the polymerase III complex in CM 792 may not be susceptible to inhibition by an inducible factor and so continues to remove mismatched bases inserted in newly-replicated DNA opposite damage template sites thus preventing the fixation of errors as mutations.  相似文献   

19.
Summary A forward mutation system has been developed to obtain rapidly clonable mutants at the URA3 locus in yeast by means of selection for 5-fluoroorotic acid resistance. We have used this system to determine base changes in 35 spontaneous and 34 ultraviolet radiation-induced ura3 base substitution mutants. Other mutants (frameshift, deletion, duplication, replacement) were detected as well. Evidence is reported which suggests cyclobutane dimers are the principal mutagenic lesions induced by UV radiation in stationary phase cells of the yeast Saccharomyces cerevisiae. Since most of the induced lesions are at 5-TT-3 sites, the results suggest that the A-rule, preferential insertion of adenine residues opposite poorly pairing sites in DNA, does not apply for yeast cells irradiated in stationary phase, whereas the spontaneous mutation data indicate that the A-rule applies for cells in logarithmic phase. Most of the spontaneous mutations are transversions. UV-induced transitions and transversions occur at approximately equal frequencies.  相似文献   

20.
Summary An exotic Zea mays L. population (Tuxpeno) was adapted to North Carolina conditions by first introducing genes for adaptability from two North Carolina varieties ([(Jarvis X Indian Chief)Tuxpeno]Tuxpeno) including four generations of intermating, and then selecting for adaptability using maturity as the primary measure. The study evaluated selection for adaptability and the diversity available between adapted Tuxpeno and the local varieties, Jarvis and Indian Chief. Analytical procedures were developed to quantify the diversity between populations and the complementation of local varieties by introduced germ plasms. The analyses utilized the specific effects available from the diallel mating design.Three replicate selections responded similarly under simple recurrent mass selection (1/10) for the earliest disease-free plants initially and additionally for plant types (primarily height) in the final generation. The 1/4 local germ plasm permitted rapid adaptation of Tuxpeno gene pool to local conditions. The adapted Tuxpeno populations yielded similarly to the local populations with an average heterosis for grain yield of 28% when crossed to the local populations used as source of genes for adaptability. The diversity found between adapted Tuxpeno lines and these local varieties based on genes affecting grain yield was 1.5 to 2.5 times that measured between the local varieties (Jarvis and Indian Chief). Diversity lost through intergradation with local material was a reasonable investment. Yield genes introduced from Tuxpeno complemented local gene pools through nonadditive, primarily dominance-associated, gene effects. Reassortment of major gene blocks apparently occurred leading to significant divergence among replicate selections involving both additive-associated and dominance-associated gene effects.Paper No. 6355 of the North Carolina Agri. Res. Ser., Raleigh, NC. Research supported in collaboration with the Rockefeller Foundation and CIMMYT, D.F. (Mexico)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号