首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Ornithine decarboxylase (ODC) and diamine oxidase (DAO) are important enzymes involved in the metabolism of polyamines (putrescine, spermidine and spermine). The influence of testosterone (T) and 17, β– estradiol (E2) on the activity of ODC and DAO was examined in cultivated normal rat kidney (NRK) epithelial cells. The results showed an increase in enzyme activities 4 hours or 12 hours after hormonal treatment. Both T and E2 led to a significant increase (1.6-fold) in ODC protein level as compared to the controls. Cellular concentration of spermidine and spermine increased (2.2- and 2.6-fold respectively) 4 hours after T addition. A higher levels in concentrations of putrescine (1.4-fold) and spermine (1.5-fold) 12 hours after E2 treatment were observed. These results suggest that the biosynthesis and terminal oxidation of the polyamines in NRK epithelial cells are androgen- and estrogen-mediated and depend on the hormonal sensitivity of the cells. Received April 5, 1999, Accepted December 20, 1999  相似文献   

2.
R. Federico  R. Angelini 《Planta》1988,173(3):317-321
Diamine-oxidase (DAO; EC 1.4.3.6) activity and di-and polyamine levels were estimated along the epicotyl and root of light-grown and etiolated lentil (Lens culinaris Medicus) and pea (Pisum sativum L.) seedlings. The activity of DAO was higher in etiolated epicotyls than in lightgrown ones. In both species there was a positive correlation between DAO activity and the diamine (putrescine and cadaverine) levels along the whole epicotyl and root. Polyamine (spermine and spermidine) distribution seemed to be associated with the meristematic and elongating zone of the epicotyl and root. The physiological function of DAO is discussed in relation to its possible role in providing hydrogen peroxide to peroxidase-dependent reactions occurring in the cell wall.Abbreviations CAD cadaverine - DA diamine - DAO diamine oxidase - PA polyamine - PUT putrescine - SPD spermidine - SPM spermine  相似文献   

3.
Changes in levels and biosynthesis of di- and polyamines are associated with stress responses in plant cells. The involvement of these molecules was investigated here in cultured potato (Solanum tuberosum L.) cells grown in medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin, and acclimated or not to low water potential. The diamine (putrescine) and polyamine (spermidine and spermine) status in cells gradually acclimated to increasing concentrations (up to 20 %, w/v) of polyethylene glycol (PEG) Mr 8000, was compared with that of unacclimated cells abruptly exposed (shocked) or not (controls) to 20 % (w/v) PEG. After a 72-h subculture, the free and perchloric acid (PCA)-soluble conjugated di- and polyamine pattern in acclimated cells was not dramatically different from that of controls, but PCA-insoluble conjugated putrescine was 14-fold higher than in controls. In shocked cells, a strong reduction in free putrescine and spermidine/spermine titres occurred. Arginine (ADC, EC 4.1.1.19) and ornithine (ODC, EC 4.1.1.17) decarboxylase activities were not substantially altered in shocked cells compared with controls, while in PEG-acclimated cell populations they increased about 3-fold, both in the soluble and particulate fractions. S-Adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.21) and diamine oxidase (DAO, EC 1.4.3.6) activities followed a similar pattern to each other in that their activities were enhanced 2- and 3-fold, respectively, in acclimated cells over unacclimated controls. Ethylene production was also enhanced in acclimated cells. These results indicate that, with respect to di- and polyamines, acquired tolerance to low water potential in potato cells leads principally to changes in putrescine biosynthesis and conjugation which may be involved in ensuring cell survival.  相似文献   

4.
Putrescine, spermidine, and spermine, as well as other primary amine substances, when added exogenously to growth-stimulated systems, inhibit ornithine decarboxylase (ODC) activity in a dose- and time-dependent manner. Evidence is presented to support a direct posttranslational modification of ODC by transglutaminase-mediated putrescine incorporation. Purified ODC serves as an acceptor protein for putrescine in the presence of transglutaminase purified from guinea pig liver. The transamidation of putrescine to ODC results in a linear decrease in activity. The Km for putrescine is 0.4 mM and the Ki for putrescine inhibition of ODC activity by transglutaminase is 0.4 mM. The kinetics are identical to those reported for physiological systems. In regenerating rat liver, protein conjugated putrescine parallels increased transglutaminase activity and the rapid disappearance of ODC activity at 8 h. These data strongly suggest that posttranslational modification of ODC by putrescine may be an important regulatory step in the trophic cascade.  相似文献   

5.
The effect of a single intraperitoneal injection of retinoic acid on liver transglutaminase (EC 2.3.2.13) activity and total putrescine, spermidine and spermine was studied. The results demonstrate that: (1) transglutaminase activity is increased over control values as early as 4-6 h after treatment, reaching a maximum (2-fold increase) at 12 h and returning to control values at 36 h; (2) the retinoic acid-induced form of enzyme is the soluble tissue transglutaminase; (3) actinomycin D treatment does not completely inhibit the early (6 h) increase of activity, while suppressing that at 12 h; (4) the immunoassay of the soluble transglutaminase shows that, 6 h after treatment, there is no increase in the protein, whereas at 12 and 24 h a significant increase is observed; (5) putrescine, but not spermidine and spermine, increases (5-7-fold) 6 and 18 h after the retinoic acid treatment. The possibility also that the expression of soluble transglutaminase is modulated in vivo by retinoic acid and the relationship to polyamine levels are discussed.  相似文献   

6.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

7.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

8.
9.
The short-term polyamine response to inoculation, with tobacco mosaic virus (TMV), of TMV-inoculated NN (hypersensitive) and nn (susceptible) plants of Nicotiana tabacum (L.) cv. Samsun was investigated. Free and conjugated polyamine concentrations, putrescine biosynthesis, evaluated through arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities, and putrescine oxidation, via diamine oxidase (DAO) activity, were analysed during the first 24 h from inoculation. Results were compared with those of mock-inoculated control plants. In NN TMV-inoculated plants undergoing the hypersensitive response (HR), free putrescine and spermidine concentrations had increased after 5 h compared with controls; polyamine conjugates also tended to increase compared with controls. In both virus- and mock-inoculated plants, ADC and ODC activities generally increased whereas DAO activity, which was present in controls, was detectable only in traces in inoculated tissues.
In TMV-infected susceptible plants, free putrescine and spermidine concentrations were lower at 5 h relative to controls, as were polyamine conjugates. No differences were revealed in ADC and ODC activities whereas DAO activity was not detectable. These results further support the hypothesis that polyamines are involved in the response of tobacco to TMV and that, only a few hours after inoculation, the response of hypersensitive plants is distinct from that of susceptible ones.  相似文献   

10.
The administration to rats of putrescine (750 mumol/kg body wt.) caused in liver, kidney and heart an increase in putrescine at 1 h and in diamine oxidase (EC 1.4.3.6) activity within 3-6 h. An increase in spermidine was observed at 9 h in liver and at 6 h in kidney, whereas in heart there was no change. The increase in diamine oxidase activity by exogenous putrescine was prevented by the administration of actinomycin D and cycloheximide, suggesting that syntheses of mRNA and protein are involved. Equimolar doses of 1,3-diaminopropane, 1,5-diaminopentane and monoacetylputrescine stimulated, similarly to putrescine, hepatic, renal and cardiac diamine oxidase activity. After the injection of a non-toxic dose of spermidine (750 mumol/kg body wt.), the increase in diamine oxidase activity occurred at 9 h in all the tissues studied, when a substantial putrescine formation from spermidine occurred. sym-Norspermidine, which is unable to form putrescine, did not cause an increase in enzyme activity. The possibility that the tissue contents of putrescine might regulate diamine oxidase activity is discussed.  相似文献   

11.
In the testosterone-induced hypertrophic and antifolate (N10-propargyl,5,6-dideazafolic acid, CB 3717)-induced hyperplastic mouse kidney models, a marked increase of two diamine levels — putrescine and cadaverine — occurred which paralled induced ornithine decarboxylase (ODC) activity. Under these conditions the augmentation of spermidine levels was much smaller, while spermine levels were affected differentially — increased by testosterone and decreased by CB 3717; this resulted in an increase of spermidine/spermine ratio in hyperplastic, but not hypertrophic kidney. α-Difluoromethylornithine (DFMO) prevented testosterone- or CB 3717-induced increment of both diamine levels. Spermidine and spermine depletion in response to DFMO was significant in hyperplastic kidney only. DFMO also significantly affected the other biochemical markers of hyperplasia, namely lowered CB 3717-induced cell proliferation rate and increased S-adenosylmethionie decarboxylase (AdoMetDC) activity. In contrast, testosterone-induced hypertrophy was not influenced by DFMO, as judged by the lack of its effect on S-adenosylmethionine synthetase and cystathionine synthase activity. These results indicate that the increase of putrescine levels does not mediate testosterone-induced renal hypertrophy and possibly also antifolate-induced hyperplasia. The involvement of spermidine in mediation of renal hyperplasia is highly possible, while that of spermine is excluded.  相似文献   

12.
Polyamine degradation was studied in the small intestine from rats fed on a polyamine-supplemented diet. Lactalbumin diet was given to Hooded-Lister rats, with or without 5 mg rat(-1) day(-1) of putrescine or spermidine for 5 days. Polyamine oxidase activity increased with putrescine and spermidine in the diet, whereas spermidine/spermine N(1)-acetyltransferase and diamine oxidase activities were unchanged. We also studied the calcium-dependent and -independent tissue transglutaminase activities, since they can modulate intestinal polyamine levels. Both types of enzymes increased in the cytosolic fraction after putrescine (about 65%) or spermidine (80-100%). Our results indicate that exogenous polyamines stimulate intestinal polyamine oxidase and tissue transglutaminase activities, probably to prevent polyamine accumulation, when other pathways of polyamine catabolism (acetylation and terminal catabolism) are not activated.  相似文献   

13.
The effect of two putrescine analogs were studied on hepatic polyamine synthesis and cell proliferation, both of which were stimulated by food intake. Trans-1, 4-diamino-2-butene (diaminobutene), which is a potent competitive inhibitor of ornithine decarboxylase [EC 4.1.1.17] (ODC), repressed the induction of ODC and effectively inhibited the accumulation of putrescine in rat liver which was induced by the feeding of dietary protein. Unexpectedly, diaminobutene did not suppress DNA synthesis and mitotic activity in rat liver, suggesting that it can mimic the role of putrescine in cell proliferation. 1,3-Diaminopropane effectively repressed the induction of ODC caused by food intake and also suppressed DNA synthesis and mitotic activity without affecting the accumulation of RNA or protein. The suppression of mitotic activity by 1,3-diaminopropane was reversed by a single injection of putrescine, spermidine, spermine, or diaminobutene. It was concluded that rapid accumulation of polyamines, especially putrescine, was a prerequisite for the later enhancement of DNA synthesis and cell proliferation in rat liver caused by food intake.  相似文献   

14.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

15.
16.
Summary. Our study was undertaken to elucidate the effects of selenomethionine (SeMet) on polyamine metabolism in regenerating rat liver tissue, as useful model of rapidly growing normal tissue. We have examined the levels of spermine, spermidine and putrescine in liver tissue. At the same time we have evaluated the activities of polyamine oxidase (PAO) and diamine oxidase (DAO), the catabolic enzymes of polyamine metabolism. The obtained results suggest that polyamine levels in regenerating liver tissue, at 7th day after two-thirds partial hepatectomy, were higher in comparison with control group. The administration of selenomethionine to hepatectomized animals during seven days, in a single daily dose of 2.5 μg/100 g body weight, increases the amount of spermine and spermidine; the level of putrescine does not change under the influence of SeMet in regenerating rat liver tissue. PAO activity is lower in regenerating hepatic tissue than in control group. Supplementation of hepatectomized animals with SeMet significantly decreases the activity of this enzyme. DAO activity was significantly higher in hepatectomized and in operated animals treated with SeMet compared to the sham-operated and control ones. The differential sensitivity observed in our model of highly proliferating normal tissue to SeMet, compared with the reported anticancer activity of this molecule is discussed.  相似文献   

17.
The inhibitory effect of the polyamines, spermidine and spermine, on the proliferation of human fibroblasts in culture was found to be reversed by the addition of aminoguanidine (AM), a specific and highly effective inhibitor of diamine oxidase (DAO) present in fetal calf serum (FCS). Aminoguanidine itself in concentration as high as 10(-3) M exhibited no effect upon cell proliferation nor did putrescine at similar concentrations. However, at higher concentrations of putrescine, cell proliferation was inhibited and this inhibition was unaffected by the addition of mM concentrations of AM. These studies support earlier hypotheses on the mechanisms of the toxic effects of polyamines on cell proliferation and establish further that the diamine oxidase-catalyzed metabolism of spermine and spermidine is necessary for their toxic effects in cell culture.  相似文献   

18.
Treatment of the first leaves of barley (Hordeum vulgare L. cv. Golden Promise) seedlings with methyl jasmonate (MJ) led to small, but significant increases in levels of free putrescine and spermine 1 d later and to significant increases in levels of free putrescine, spermidine and spermine by 4 d following treatment. MJ-treated first leaves also exhibited significant increases in the amounts of soluble conjugates of putrescine and spermidine 1, 2 and 4 d after treatment. In second leaves of plants where the first leaves had been treated with MJ, no significant changes in levels of free polyamines were observed, but significant increases in levels of soluble conjugates of putrescine and spermidine were detected. These changes were accompanied by increased activities of soluble ornithine decarboxylase (ODC), soluble and particulate arginine decarboxylase (ADC), and S-adenosylmethionine decarboxylase (AdoMetDC), in first and second leaves following treatment of the first leaves with MJ. Activities of soluble and particulate diamine oxidase (DAO) were also higher in first and second leaves following treatment of the first leaves with MJ. Treatment of the first leaves with MJ led to a significant reduction in powdery mildew (Blumeria graminis f. sp. hordei) infection on the second leaves and also resulted in significant increases in activities of the plant defence-related enzymes, phenylalanine ammonia lyase (PAL) and peroxidase.  相似文献   

19.
Ornithine decarboxylase (ODC) activity and polyamine levels were measured during early development of the frog, Microhyla ornata. ODC activity was found to be high and it showed three major peaks during the first 60 hr of development. Putrescine and spermidine levels increased gradually during the above period with little change in spermine. Treatment of developing embryos with exogenous putrescine and spermidine prevented the normal increase in ODC activity. Spermine did not have any significant effect. Addition of ornithine also prevented the increase in ODC activity. Experiment using exogenous ornithine and alpha-methylornithine revealed that formation of putrescine and/or spermidine from ornithine is necessary for the suppression of ODC to occur. Suppression of ODC takes place even if conversion of putrescine to spermidine is blocked, indicating that putrescine, independent of its conversion to spermidine, also plays a role in ODC regulation.  相似文献   

20.
The roles of ornithine decarboxylase (ODC, EC 4.1.1.17) and polyamines in cellular aging were investigated by examining serum-induced changes of these parameters in quiescent IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL) and in human progeria fibroblasts. Serum stimulation caused increases of ODC and DNA synthesis in IMR-90 human diploid fibroblasts, with maximal values occurring, respectively, 10 hr and 22 hr after serum stimulation. Both serum-induced ODC activity and DNA synthesis in IMR-90 cells were found to be inversely related to their PDL. Maximal ODC activity and DNA synthesis in young cells (PDL = approximately 18-22) were, respectively, five-fold and six-fold greater than that in old cells (PDL = approximately 50-55), which in turn were comparable or slightly higher than that in progeria fibroblasts. Polyamine contents (putrescine, spermidine, and spermine) in quiescent IMR-90 cells did not show significant PDL-dependency. The putrescine and spermine contents in quiescent progeria cells were comparable to those in quiescent IMR-90 cells. The spermidine content in quiescent progeria cells, however, was extremely low, less than half of that in quiescent IMR-90 cells. Serum stimulation caused a marked increase in putrescine content in young cells but not in old cells or in progeria cells. The spermidine and the spermine content in IMR-90 cells, either young or old, and in progeria cells did not change significantly after serum stimulation. Our study indicated that aging of IMR-90 human diploid fibroblasts was accompanied by specific changes of polyamine metabolism, namely, the serum-induced ODC activity and putrescine accumulation. These changes were also observed in progeria fibroblasts derived from patients with Hutchinson-Gilford syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号