首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.  相似文献   

2.
BackgroundDiffuse large B-cell lymphoma (DLBCL) is an aggressive disease, with 30% to 40% of patients failing to be cured with available primary therapy. microRNAs (miRNAs) are RNA molecules that attenuate expression of their mRNA targets. To characterize the DLBCL miRNome, we sequenced miRNAs from 92 DLBCL and 15 benign centroblast fresh frozen samples and from 140 DLBCL formalin-fixed, paraffin-embedded tissue samples for validation.ResultsWe identify known and candidate novel miRNAs, 25 of which are associated with survival independently of cell-of-origin and International Prognostic Index scores, which are established indicators of outcome. Of these 25 miRNAs, six miRNAs are significantly associated with survival in our validation cohort. Abundant expression of miR-28-5p, miR-214-5p, miR-339-3p, and miR-5586-5p is associated with superior outcome, while abundant expression of miR-324-5p and NOVELM00203M is associated with inferior outcome. Comparison of DLBCL miRNA-seq expression profiles with those from other cancer types identifies miRNAs that were more abundant in B-cell contexts. Unsupervised clustering of miRNAs identifies two clusters of patients that have distinct differences in their outcomes. Our integrative miRNA and mRNA expression analyses reveal that miRNAs increased in abundance in DLBCL appear to regulate the expression of genes involved in metabolism, cell cycle, and protein modification. Additionally, these miRNAs, including one candidate novel miRNA, miR-10393-3p, appear to target chromatin modification genes that are frequent targets of somatic mutation in non-Hodgkin lymphomas.ConclusionsOur comprehensive sequence analysis of the DLBCL miRNome identifies candidate novel miRNAs and miRNAs associated with survival, reinforces results from previous mutational analyses, and reveals regulatory networks of significance for lymphomagenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0568-y) contains supplementary material, which is available to authorized users.  相似文献   

3.

Purpose

We examined circulating miRNA expression profiles in plasma of patients with coronary artery disease (CAD) vs. matched controls, with the aim of identifying novel discriminating biomarkers of Stable (SA) and Unstable (UA) angina.

Methods

An exploratory analysis of plasmatic expression profile of 367 miRNAs was conducted in a group of SA and UA patients and control donors, using TaqMan microRNA Arrays. Screening confirmation and expression analysis were performed by qRT-PCR: all miRNAs found dysregulated were examined in the plasma of troponin-negative UA (n=19) and SA (n=34) patients and control subjects (n=20), matched for sex, age, and cardiovascular risk factors. In addition, the expression of 14 known CAD-associated miRNAs was also investigated.

Results

Out of 178 miRNAs consistently detected in plasma samples, 3 showed positive modulation by CAD when compared to controls: miR-337-5p, miR-433, and miR-485-3p. Further, miR-1, -122, -126, -133a, -133b, and miR-199a were positively modulated in both UA and SA patients, while miR-337-5p and miR-145 showed a positive modulation only in SA or UA patients, respectively. ROC curve analyses showed a good diagnostic potential (AUC ≥ 0.85) for miR-1, -126, and -483-5p in SA and for miR-1, -126, and -133a in UA patients vs. controls, respectively. No discriminating AUC values were observed comparing SA vs. UA patients. Hierarchical cluster analysis showed that the combination of miR-1, -133a, and -126 in UA and of miR-1, -126, and -485-3p in SA correctly classified patients vs. controls with an efficiency ≥ 87%. No combination of miRNAs was able to reliably discriminate patients with UA from patients with SA.

Conclusions

This work showed that specific plasmatic miRNA signatures have the potential to accurately discriminate patients with angiographically documented CAD from matched controls. We failed to identify a plasmatic miRNA expression pattern capable to differentiate SA from UA patients.  相似文献   

4.
BackgroundFacioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development.MethodsMuscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays.ResultsDuring human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD.ConclusionsThis work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.  相似文献   

5.
6.
Serum microRNAs (miRNAs) have become a highlighted research hotspot, especially for their great potential as a novel promising non-invasive biomarker in cancer diagnosis. The most frequently used approach for serum miRNAs detection is quantitative real time polymerase chain reaction (qPCR). In order to obtain reliable qPCR data of miRNAs expression, the use of reference genes as endogenous control is undoubtly necessary. However, no systematic evaluation and validation of reference genes for normalizing qPCR analysis of serum miRNAs has been reported in colorectal adenocarcinoma. We firstly profiled pooled serum of colorectal adenocarcinoma, colorectal adenoma and healthy controls and selected a list of 13 miRNAs as candidate reference genes. U6 snRNA (U6) and above-mentioned 13 miRNAs were included in further confirmation by qPCR. As a result, 5 miRNAs (miR-151a-3p, miR-4446-3p, miR-221-3p, miR-93-5p and miR-3184-3p) were not detected in all samples and 2 miRNAs (miR-197-3p and miR-26a-5p) were relatively low with median Cq more than 35, and were excluded from further stability analysis. Then variable stability of other 6 miRNAs (miR-103b, miR-484, miR-16-5p, miR-3615, miR-18a-3p and miR-191-5p) and U6 were evaluated using two algorithms: geNorm and NormFinder which both identified miR-191-5p as the most stably expressed reference gene and selected miR-191-5p and U6 as the most stable pair of reference genes. After validating in an independent large cohorts and selecting miR-92a-3p as target miRNA to evaluate the effect of reference gene, we propose that combination of miR-191-5p and U6 could be used as reference genes for serum microRNAs qPCR data in colorectal adenocarcinoma, colorectal adenoma and healthy controls.  相似文献   

7.
8.
ABSTRACT

Circulating microRNAs (miRNAs) are valuable biomarkers that may provide important insight into the pathogenesis of metabolic syndrome (MetS). Moreover, there is an association between chronotypical characteristics and MetS predisposition. Considering that expression of some miRNAs is circadian-rhythm-dependent, the aim of this study was to investigate the circulating miRNA profile in subjects with and without MetS in association with chronotype. The expression of 86 metabolic syndrome-related miRNAs was investigated in the plasma of 21 subjects with MetS and in 82 subjects without MetS using miRCURY LNA miRNA PCR System technology. Chronotype was assessed using the Horne and Östberg Morningness-Eveningness Questionnaire. Bioinformatic analyses were performed to explore the target genes and biological pathways regulated by the selected miRNAs. Subjects with MetS were more often evening chronotype compared to non-MetS controls. Additionally, four miRNAs (miR-140-3p, miR-150-5p, miR-375, and miR-29 c-3p) demonstrated interaction with MetS and chronotype. Interestingly, the target genes of these four miRNAs participate in pathways related to the circadian clock. In conclusion, we identified four circulating miRNAs whose circulating levels could interact with MetS and chronotype.  相似文献   

9.

Background

Circulating microRNAs (miRNAs) are emerging as promising biomarkers for human cancer. Osteosarcoma is the most common human primary malignant bone tumor in children and young adults. The objective of this study was to investigate whether circulating miRNAs in plasma could be a useful biomarker for detecting osteosarcoma and monitoring tumor removal dynamics.

Methods

Plasma samples were obtained from 90 patients before surgery, 50 patients after one month of surgery, and 90 healthy individuals. The study was divided into three steps: First, initial screening of the profiles of circulating miRNAs in pooled plasma samples from healthy controls and pre-operative osteosarcoma patients using a TaqMan low density array (TLDA). Second, evaluation of miRNA concentration in individual plasma samples from 90 pre-operative osteosarcoma patients and 90 healthy controls by a quantitative real time PCR (qRT-PCR) assay. Third, evaluation of miRNA concentration in paired plasma samples from 50 pre- and post-operative osteosarcoma patients by qRT-PCR assay.

Results

Four plasma miRNAs including miR-195-5p, miR-199a-3p, miR-320a, and miR-374a-5p were significantly increased in the osteosarcoma patients. Receiver operating characteristics curve analysis of the combined populations demonstrated that the four-miRNA signature could discriminate cases from controls with an area under the curve of 0.9608 (95% CI 0.9307-0.9912). These 4 miRNAs were markedly decreased in the plasma after operation. In addition, circulating miR-195-5p and miR-199a-3p were correlated with metastasis status, while miR-199a-3p and miR-320a were correlated with histological subtype.

Conclusions

Our data suggest that altered levels of circulating miRNAs might have great potential to serve as novel, non-invasive biomarkers for osteosarcoma.  相似文献   

10.
11.
In the last decade, Acute Kidney Injury (AKI) diagnosis and therapy have not notably improved probably due to delay in the diagnosis, among other issues. Precocity and accuracy should be critical parameters in novel AKI biomarker discovery. microRNAs are key regulators of cell responses to many stimuli and they can be secreted to the extracellular environment. Therefore, they can be detected in body fluids and are emerging as novel disease biomarkers. We aimed to identify and validate serum miRNAs useful for AKI diagnosis and management. Using qRT-PCR arrays in serum samples, we determined miRNAs differentially expressed between AKI patients and healthy controls. Statistical and target prediction analysis allowed us to identify a panel of 10 serum miRNAs. This set was further validated, by qRT-PCR, in two independent cohorts of patients with relevant morbi-mortality related to AKI: Intensive Care Units (ICU) and Cardiac Surgery (CS). Statistical correlations with patient clinical parameter were performed. Our results demonstrated that the 10 selected miRNAs (miR-101-3p, miR-127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p, miR-146a-5p, miR-27a-3p, miR-93-3p and miR-10a-5p) were diagnostic biomarkers of AKI in ICU patients, exhibiting areas under the curve close to 1 in ROC analysis. Outstandingly, serum miRNAs estimated before CS predicted AKI development later on, thus becoming biomarkers to predict AKI predisposition. Moreover, after surgery, the expression of the miRNAs was modulated days before serum creatinine increased, demonstrating early diagnostic value. In summary, we have identified a set of serum miRNAs as AKI biomarkers useful in clinical practice, since they demonstrate early detection and high diagnostic value and they recognize patients at risk.  相似文献   

12.

Background

The dysregulated expressions of circulating miRNAs have been detected in various cardiovascular diseases. In our previous experiments, the altered expressions of circulating miRNA-21-5p, miRNA-361-5p and miRNA-519e-5p were confirmed in patients with coronary atherosclerosis by miRNA microarrays. However, the expression levels of these circulating miRNAs in the early phase of acute myocardial infarction (AMI) are still unknown. In the present study, our aims were to examine the expressions of circulating miR-21-5p, miR-361-5p and miR-519e-5p in AMI patients, and assess their clinical applications for diagnosing and monitoring AMI.

Results

Two different cohorts were enrolled in this study. The first cohort included 17 AMI patients and 28 healthy volunteers, and the second cohort included 9 AMI patients, 9 ischemic stroke patients, 8 patients with pulmonary embolism, and 12 healthy volunteers. Quantitative real-time PCR and ELISA assays were preformed to detect the concentrations of plasma miRNAs and cardiac troponin I (cTnI), respectively. The results showed that the plasma levels of miR-21-5p and miR-361-5p were significantly increased in AMI patients, whereas the concentration of circulating miR-519e-5p was reduced. Interestingly, the levels of these circulating miRNAs correlated with the concentrations of plasma cTnI. Receiver operating characteristic (ROC) analysis revealed that these three circulating miRNAs had considerable diagnostic accuracy for AMI with high values of area under ROC curve (AUC). Importantly, combining the three miRNAs significantly increased the diagnostic accuracy. Furthermore, cell experiments demonstrated that these plasma miRNAs may originate from injured cardiomyocytes induced by hypoxia. In addition, the levels of all the three circulating miRNAs in ischemic stroke (IS) and pulmonary embolism (PE) were elevated, whereas the decreased level of plasma miR-519e-5p was only detected in AMI. ROC analysis demonstrated that circulating miR-519e-5p may be a useful biomarker for distinguishing AMI from other ischemic diseases.

Conclusions

Circulating miRNAs may be novel and powerful biomarkers for AMI and they could be potential diagnostic tool for AMI.  相似文献   

13.
14.
We identified 40 miRNAs with inherited aberrant expression by multiple parallel sequencing of human HeLa cells irradiated with X rays and mitomycin C. Twenty-two miRNAs were repressed and 15 miRNAs were induced after radiation and mytomycin C treatment. The expression of three miRNAs (miR-10b-5p, miR-148a-3p, and miR-340-5p) decreased after X-ray exposure and increased after mitomycin C treatment. The spectrum of aberrantly expressed miRNAs after X-ray and mitomycin C treatment is different, except for three miRNAs (mir-100-5p, miR-99b-5p, miR-501-3p), which showed the inherited decreased expression after both mutagens. It has been ascertained that for five miRNAs (miR-21-3p, miR-182-5p, miR-19b-3p, miR-30a-3p, and miR-30e-3p) with increased inherited expression, the targets are well-described tumor suppressor genes. For 9 miRNAs (miR-99b-5p, miR-148a-3p, miR-365a-3p, miR-193a-3p, miR-100-5p, miR-99a-5p, miR-29b-3p, miR-340-5p, and miR-23b-3p) with reduced inherited expression, the targets are oncogenes. The obtained results provide further support of the idea that induced epigenetic changes in the genome should be considered when assessing the long-term genetic effects of ionizing radiation and chemical compounds.  相似文献   

15.
《Genomics》2021,113(3):1514-1521
To explore the role of plasma miRNAs in exosomes in early postmenopausal women. Small RNA sequencing was implemented to clarify the expression of miRNA in plasma exosomes obtained from 15 postmenopausal women, divided into groups of osteoporosis, osteopenia, and normal bone mass based on bone mineral density. Differentially expressed miRNAs (DEMs) were identified by comparing miRNA expression profiles. Five putative miRNAs, miR-224-3p, miR-25-5p, miR-302a-3p, miR-642a-3p, and miR-766-5p were confirmed by real-time PCR; miRNA target genes were obtained from 4 databases: miRWalk, miRDB, RNA22, and TargetScan. The miRNA-mRNA- Kyoto Encyclopedia of Genes and Genomes (KEGG) networks were analyzed, and the DEMs' potential role was investigated by gene ontology terms and KEGG pathway annotation. The results suggest that characterizing plasma exosomal miRNA profiles of early postmenopausal women by small RNA sequencing could identify novel exo-miRNAs involved in bone remodeling, and miR-642a-3p maybe contribute to the prediction and diagnosis of early postmenopausal osteoporosis.  相似文献   

16.
Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. Conventional diagnostic techniques are ineffective and insufficient to diagnose CHD with higher accuracy. To use the circulating microRNAs (miRNAs) as non-invasive, specific and sensitive biomarkers for diagnosing of CHD, 203 patients with CHD and 144 age-matched controls (126 high-risk controls and 18 healthy volunteers) were enrolled in this study. The direct S-Poly(T)Plus method was used to identify novel miRNAs expression profile of CHD patients and to evaluate their clinical diagnostic value. This method is an RNA extraction-free and robust quantification method, which simplifies procedures, reduces variations, in particular increases the accuracy. Twelve differentially expressed miRNAs between CHD patients and high-risk controls were selected, and their performances were evaluated in validation set-1 with 96 plasma samples. Finally, six (miR-15b-5p, miR-29c-3p, miR-199a-3p, miR-320e, miR-361-5p and miR-378b) of these 12 miRNAs were verified in validation set-2 with a sensitivity of 92.8% and a specificity of 89.5%, and the AUC was 0.971 (95% confidence interval, 0.948-0.993, P < .001) in a large cohort for CHD patients diagnosis. Plasma fractionation indicated that only a small amount of miRNAs were assembled into EVs. Direct S-Poly(T)Plus method could be used for disease diagnosis and 12 unique miRNAs could be used for diagnosis of CHD.  相似文献   

17.
BackgroundDifferential microRNA (miRNA) expression profiles in plasma or serum were identified, providing foundation for studying their potentially diagnostic role in colorectal cancer (CRC).MethodsWe performed S-poly(T) Plus PCR assay to select and validate differentially expressed plasma miRNAs from a sample set including 101 CRC patients, 20 patients with colorectal noncancerous polyps (NCP), and 134 healthy controls. And bioinformatics methods was used to integrated predicted or validated targets of the differentially dysregulated miRNAs and analyzed their overrepresented pathways.ResultsAfter the two-phase selection and validation process, we identified a miRNA panel (miR-144-3p, miR-425-5p, and miR-1260b) with high diagnostic efficiency for CRC; the panel distinguished CRC patients from controls with 93.8% sensitivity and 91.3% specificity. Results indicated that the dysregulated miRNAs in CRC were functionally involved in several key cancer-related pathways, such as axonal guidance, PI3K, and calcium signaling pathways.ConclusionsOur study demonstrated that a plasma 3-miRNA panel may serve as a novel noninvasive biomarker to diagnose CRC. This plasma 3-miRNA panel may be related to CRC development. However, further studies are needed to highlight its theoretical strengths.  相似文献   

18.
Recent studies have revealed the critical role of several microRNAs (miRNAs) in energy homeostasis and metabolic processes and suggest that circulating miRNAs can be used as early predictors of weight loss in the design of precision nutrition. Thus, the aim of this study was to investigate circulating adiposity-related miRNAs as biomarkers of the response to two specific weight loss dietary treatments. The expression of 86 miRNAs was investigated in plasma of 78 subjects with obesity randomized to two different diets [moderately high-protein diet (n = 38) and low-fat diet (n = 40)] and in 25 eutrophic controls (BMI ≤ 25 kg/m2). Bioinformatic analyses were performed to explore the target genes and biological pathways regulated by the dysregulated miRNAs. As results, 26 miRNAs were found differently expressed in eutrophic and volunteers with obesity. Moreover, 7 miRNAs (miR-130a-3p, miR-142-5p, miR-144-5p, miR-15a-5p, miR-22-3p, miR-221-3p and miR-29c-3p) were differentially expressed between responders and non-responders to a low-fat diet. Furthermore, after adjustment for basal glucose levels, 1-SD increase in miR-22-3p expression was associated with reduction in the risk of non-response to low-fat diet [OR = 0.181, 95% CI (0.084-0.947), P = .043]. Bioinformatic analyses evidenced that these 7 miRNAs regulate the expression of genes participating in important metabolic pathways. Conclusively, 7 circulating miRNAs related to adiposity could be used for predicting the response to a low-fat diet intervention prescribed to lose weight.  相似文献   

19.
Expression profiling of microRNAs (miRNAs) in most diseases might be popular and provide the possibility for diagnostic implication, but few studies have accurately quantified the expression level of dysregulated miRNAs in acute myeloid leukemia (AML). In this study, we analyzed the peripheral blood mononuclear cells (PBMCs) from 10 AML patients (subtypes M1 to M5) and six normal controls by miRNA microarray and identified several differentially expressed miRNAs. Among them miR-29a and miR-142-3p were selectively encountered in Northern blot analysis and their significantly decreased expression in AML was further confirmed. Quantitative real-time PCR in 52 primarily diagnosed AML patients and 100 normal controls not only verified the expression properties of these 2 miRNAs, but also established that the expression level of miR-142-3p and miR-29a in PBMCs could be used as novel diagnostic markers. A better diagnostic outcome was achieved by combining miR-29a and miR-142-3p with about 90% sensitivity, 100% specificity, and an area under the ROC curve (AUC) of 0.97. Our results provide insights into the involvement of miRNAs in leukemogenesis, and offer candidates for AML diagnosis and therapeutic strategy.  相似文献   

20.
Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls. Eleven miRNAs were deregulated: 9 displayed higher levels compared to controls (miR-34a-5p, miR-34b-3p, miR-34c-5p, miR-146b-5p, miR-208a, miR-221-3p and miR-381), while 4 were decreased (miR-125b-5p, miR-193a-3p, miR-193b-3p and miR-378a-3p). To explore the relevance of DM2 miRNA deregulation, the predicted interactions between miRNA and mRNA were investigated. Global gene expression was analyzed in DM2 and controls and bioinformatic analysis identified more than 1,000 miRNA/mRNA interactions. Pathway and function analysis highlighted the involvement of the miRNA-deregulated mRNAs in multiple aspects of DM2 pathophysiology. In conclusion, the observed miRNA dysregulations may contribute to DM2 pathogenetic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号