首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The novel swine-origin influenza A/H1N1 virus (S-OIV) first detected in April 2009 has been identified to transmit from human to human directly and is the cause of currently emerged pandemic. In this study, nucleotide and deduced amino acid sequences of hemagglutinin (HA) and neuraminidase (NA) of the S-OIV and other influenza A viruses were analyzed through bioinformatic tools for phylogenetic analysis, genetic recombination and point mutation to investigate the emergence and adaptation of the S-OIV in human. The phylogenetic analysis showed that the HA comes from triple reassortant influenza A/H1N2 and the NA from Eurasian swine influenza A/H1N1 indicating HA and NA to descend from different lineages during the genesis of the S-OIV. Recombination analysis nullified the possibility of occurrence of recombination in HA and NA denoting the role of reassortment in the outbreak. Several conservative mutations are observed in the amino acid sequences of the HA and NA and this mutated residues are identical in the S-OIV. The results reported herein suggested the notion that the recent pandemic is the result of reassortment of different genes from different lineages of two envelope proteins, HA and NA which are responsible for antigenic activity of virus. This study further suggests that the adaptive capability of the S-OIV in human is acquired by the unique mutations generated during emergence.  相似文献   

2.
Sun S  Wang Q  Zhao F  Chen W  Li Z 《PloS one》2012,7(2):e32119
Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data.  相似文献   

3.
Reassortments and point mutations are two major contributors to diversity of Influenza A virus; however, the link between these two processes is unclear. It has been suggested that reassortments provoke a temporary increase in the rate of amino acid changes as the viral proteins adapt to new genetic environment, but this phenomenon has not been studied systematically. Here, we use a phylogenetic approach to infer the reassortment events between the 8 segments of influenza A H3N2 virus since its emergence in humans in 1968. We then study the amino acid replacements that occurred in genes encoded in each segment subsequent to reassortments. In five out of eight genes (NA, M1, HA, PB1 and NS1), the reassortment events led to a transient increase in the rate of amino acid replacements on the descendant phylogenetic branches. In NA and HA, the replacements following reassortments were enriched with parallel and/or reversing replacements; in contrast, the replacements at sites responsible for differences between antigenic clusters (in HA) and at sites under positive selection (in NA) were underrepresented among them. Post-reassortment adaptive walks contribute to adaptive evolution in Influenza A: in NA, an average reassortment event causes at least 2.1 amino acid replacements in a reassorted gene, with, on average, 0.43 amino acid replacements per evolving post-reassortment lineage; and at least ∼9% of all amino acid replacements are provoked by reassortments.  相似文献   

4.
Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse.  相似文献   

5.
We are studying the structural proteins and molecular interactions required for formation and release of influenza virus-like particles (VLPs) from the cell surface. To investigate these events, we generated a quadruple baculovirus recombinant that simultaneously expresses in Sf9 cells the hemagglutinin (HA), neuraminidase (NA), matrix (M1), and M2 proteins of influenza virus A/Udorn/72 (H3N2). Using this quadruple recombinant, we have been able to demonstrate by double-labeling immunofluorescence that matrix protein (M1) localizes in nuclei as well as at discrete areas of the plasma membrane where HA and NA colocalize at the cell surface. Western blot analysis of cell supernatant showed that M1, HA, and NA were secreted into the culture medium. Furthermore, these proteins comigrated in similar fractions when concentrated supernatant was subjected to differential centrifugation. Electron microscopic examination (EM) of these fractions revealed influenza VLPs bearing surface projections that closely resemble those of wild-type influenza virus. Immunogold labeling and EM demonstrated that the HA and NA were present on the surface of the VLPs. We further investigated the minimal number of structural proteins necessary for VLP assembly and release using single-gene baculovirus recombinants. Expression of M1 protein alone led to the release of vesicular particles, which in gradient centrifugation analysis migrated in a similar pattern to that of the VLPs. Immunoprecipitation of M1 protein from purified M1 vesicles, VLPs, or influenza virus showed that the relative amount of M1 protein associated with M1 vesicles or VLPs was higher than that associated with virions, suggesting that particle formation and budding is a very frequent event. Finally, the HA gene within the quadruple recombinant was replaced either by a gene encoding the G protein of vesicular stomatitis virus or by a hybrid gene containing the cytoplasmic tail and transmembrane domain of the HA and the ectodomain of the G protein. Each of these constructs was able to drive the assembly and release of VLPs, although enhanced recruitment of the G glycoprotein onto the surface of the particle was observed with the recombinant carrying a G/HA chimeric gene. The described approach to assembly of wild-type and chimeric influenza VLPs may provide a valuable tool for further investigation of viral morphogenesis and genome packaging as well as for the development of novel vaccines.  相似文献   

6.
M Enami  K Enami 《Journal of virology》1996,70(10):6653-6657
We have analyzed the mechanism by which the matrix (M1) protein associates with cellular membranes during influenza A virus assembly. Interaction of the M1 protein with the viral hemagglutinin (HA) or neuraminidase (NA) glycoprotein was extensively analyzed by using wild-type and transfectant influenza viruses as well as recombinant vaccinia viruses expressing the M1 protein, HA, or NA. Membrane binding of the M1 protein was significantly stimulated at the late stage of virus infection. Using recombinant vaccinia viruses, we found that a relatively small fraction (20 to 40%) of the cytoplasmic M1 protein associated with cellular membranes in the absence of other viral proteins, while coexpression of the HA and the NA stimulated membrane binding of the M1 protein. The stimulatory effect of the NA (>90%) was significant and higher than that of the HA (>60%). Introduction of mutations into the cytoplasmic tail of the NA interfered with its stimulatory effect. Meanwhile, the HA may complement the defective NA and facilitate virus assembly in cells infected with the NA/TAIL(-) transfectant. In conclusion, the highly conserved cytoplasmic tails of the HA and NA play an important role in virus assembly.  相似文献   

7.
The baculovirus expression system is a powerful tool for expression of recombinant proteins. Here we use it to produce correctly folded and glycosylated versions of the influenza A virus surface glycoproteins - the hemagglutinin (HA) and the neuraminidase (NA). As an example, we chose the HA and NA proteins expressed by the novel H7N9 virus that recently emerged in China. However the protocol can be easily adapted for HA and NA proteins expressed by any other influenza A and B virus strains. Recombinant HA (rHA) and NA (rNA) proteins are important reagents for immunological assays such as ELISPOT and ELISA, and are also in wide use for vaccine standardization, antibody discovery, isolation and characterization. Furthermore, recombinant NA molecules can be used to screen for small molecule inhibitors and are useful for characterization of the enzymatic function of the NA, as well as its sensitivity to antivirals. Recombinant HA proteins are also being tested as experimental vaccines in animal models, and a vaccine based on recombinant HA was recently licensed by the FDA for use in humans. The method we describe here to produce these molecules is straight forward and can facilitate research in influenza laboratories, since it allows for production of large amounts of proteins fast and at a low cost. Although here we focus on influenza virus surface glycoproteins, this method can also be used to produce other viral and cellular surface proteins.  相似文献   

8.
Drugs inhibiting the influenza A virus (IAV) neuraminidase (NA) are the cornerstone of anti-IAV chemotherapy and prophylaxis in man. Drug-resistant mutations in NA arise frequently in human isolates, limiting the therapeutic application of NA inhibitors. Here, we show that antibody-driven antigenic variation in one domain of the H1 hemagglutinin Sa site leads to compensatory mutations in NA, resulting in NA antigenic variation and acquisition of drug resistance. These findings indicate that influenza A virus resistance to NA inhibitors can potentially arise from antibody driven HA escape, confounding analysis of influenza NA evolution in nature.  相似文献   

9.

Background

The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity.

Methodology/Principal Findings

The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogeneous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA.

Conclusion/Significance

The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion.  相似文献   

10.
Quantifying adaptive evolution at the genomic scale is an essential yet challenging aspect of evolutionary biology. Here, we develop a method that extends and generalizes previous approaches to estimate the rate of genomic adaptation in rapidly evolving populations and apply it to a large data set of complete human influenza A virus genome sequences. In accord with previous studies, we observe particularly high rates of adaptive evolution in domain 1 of the viral hemagglutinin (HA1). However, our novel approach also reveals previously unseen adaptation in other viral genes. Notably, we find that the rate of adaptation (per codon per year) is higher in surface residues of the viral neuraminidase than in HA1, indicating strong antibody-mediated selection on the former. We also observed high rates of adaptive evolution in several nonstructural proteins, which may relate to viral evasion of T-cell and innate immune responses. Furthermore, our analysis provides strong quantitative support for the hypothesis that human H1N1 influenza experiences weaker antigenic selection than H3N2. As well as shedding new light on the dynamics and determinants of positive Darwinian selection in influenza viruses, the approach introduced here is applicable to other pathogens for which densely sampled genome sequences are available, and hence is ideally suited to the interpretation of next-generation genome sequencing data.  相似文献   

11.
Influenza A viruses possess two virion surface proteins, hemagglutinin (HA) and neuraminidase (NA). The HA binds to sialyloligosaccharide viral receptors, while the NA removes sialic acids from the host cell and viral sialyloligosaccarides. Alterations of the HA occur during adaptation of influenza viruses to new host species, as in the 1957 and 1968 influenza pandemics. To gain a better understanding of the contributions of the HA and possibly the NA to this process, we generated cell lines expressing reduced levels of the influenza virus receptor determinant, sialic acid, by selecting Madin-Darby canine kidney cells resistant to a lectin specific for sialic acid linked to galactose by alpha(2-3) or alpha(2-6) linkages. One of these cell lines had less than 1/10 as much N-acetylneuraminic acid as its parent cell line. When serially passaged in this cell line, human H3N2 viruses lost sialidase activity due to a large internal deletion in the NA gene, without alteration of the HA gene. These findings indicate that NA mutations can contribute to the adaptation of influenza A virus to new host environments and hence may play a role in the transmission of virus across species.  相似文献   

12.
Phenotypic plasticity is a potentially definitive solution to environment heterogeneity, driving biologists to understand why it is not ubiquitous in nature. While costs and constraints may limit the success of plasticity, we are still far from a complete theory of when these limitations actually proscribe adaptive plasticity. Here I use a simple model of plasticity incorporating developmental noise to explore the competitive and evolutionary relationships of specialist and generalist genotypes spreading across a heterogeneous landscape. Results show that plasticity can arise in the context of specialism, preadapting genotypes to later evolve toward plastic generalism. Developmental noise helps a mutant with imperfect plasticity successfully compete against its ancestor, providing an evolutionary path by which subsequent mutations can refine plasticity toward its optimum. These results address how the complex selection pressures across a heterogeneous environment can help evolution find paths around constraints arising from developmental mechanisms.  相似文献   

13.
Influenza virions bud preferentially from the apical plasma membrane of infected epithelial cells, by enveloping viral nucleocapsids located in the cytosol with its viral integral membrane proteins, i.e., hemagglutinin (HA), neuraminidase (NA), and M2 proteins, located at the plasma membrane. Because individually expressed HA, NA, and M2 proteins are targeted to the apical surface of the cell, guided by apical sorting signals in their transmembrane or cytoplasmic domains, it has been proposed that the polarized budding of influenza virions depends on the interaction of nucleocapsids and matrix proteins with the cytoplasmic domains of HA, NA, and/or M2 proteins. Since HA is the major protein component of the viral envelope, its polarized surface delivery may be a major force that drives polarized viral budding. We investigated this hypothesis by infecting MDCK cells with a transfectant influenza virus carrying a mutant form of HA (C560Y) with a basolateral sorting signal in its cytoplasmic domain. C560Y HA was expressed nonpolarly on the surface of infected MDCK cells. Interestingly, viral budding remained apical in C560Y virus-infected cells, and so did the location of NP and M1 proteins at late times of infection. These results are consistent with a model in which apical viral budding is a shared function of various viral components rather than a role of the major viral envelope glycoprotein HA.  相似文献   

14.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

15.
The genetic basis for virulence and host switching in influenza A viruses (FLUAV) is largely unknown. Because the hemagglutinin (HA) protein is a determinant of these properties, HA evolution was mapped in an experimental model of mouse lung adaptation. Variants of prototype A/Hong Kong/1/68 (H3N2) (wild-type [wt] HK) human virus were selected in both longitudinal and parallel studies of lung adaptation. Mapping of HA mutations found in 11 independently derived mouse-adapted populations of wt HK identified 27 mutations that clustered within two distinct regions in or near the globular frameworks of the HA1 and HA2 subunits. The adaptive mutations demonstrated multiple instances of convergent evolution involving four amino acid positions (162, 210, and 218 in HA1 and 154 in HA2). By use of reverse genetics, convergent HA mutations were shown to affect cell tropism by enhancing infection and replication in primary mouse tracheal epithelial cells in vitro and mouse lung tissue in vivo. Adaptive HA mutations were multifunctional, affecting both median pH of fusion and receptor specificity. Specific mutations within both adaptive regions were shown to increase virulence in a mouse lung model. The occurrence of mutations in the HA1 and HA2 adaptive regions of natural FLUAV host range and virulent variants of avian and mammalian viruses is discussed. This study has identified adaptive sites and regions within the HA1 and HA2 subunits that may guide future studies of viral adaptation and evolution in nature.  相似文献   

16.
The avian influenza (bird flu) is an infectious disease of birds, ranging from a mild to a severe form of illness. Influenza viruses pose significant challenges to both human and animal health. The proteins, nucleoprotein (NP), neuraminidase (NA) and hemagglutinin (HA) of influenza A virus (Bird flu virus) sub-type A/Hatay/2004/(H5N1) from chicken were selected for this study. Our in silico analysis predicted that HA of influenza A virus is highly sensitive to mutations and hence it is significant for its pathogenic nature. None of the mutations was detected as an important change except in NA where K332R was at a PKC phosphorylation site. Analysis of the sequence comparison showed that the maximum number of mutations were observed in HA. These mutations are significant as they are involved in change in polarity or hydrophobicity as well as in propensity of each amino acid residue to stabilize the secondary structure. The program MAPMUTATION can be used to monitor the mutations, and predict the trend of mutations.  相似文献   

17.
Changes in conductance of oxidized cholesterol planar lipid bilayers were measured following the incorporation of isolated surface glycoproteins; hemagglutinin and neuraminidase (HA+NA) or matrix protein (M-protein) of influenza virus. The conductance dependence of the lipid bilayers on the HA+NA or M-protein concentrations indicates different mechanisms of interaction of these viral proteins with the lipid bilayer. Adsorption of M-protein molecules on one side of the lipid bilayer affects the character of the HA+NA interaction with the opposite side. Planar lipid bilayers can be a useful model for investigation of the assembly of influenza virions and other enveloped viruses.  相似文献   

18.
Influenza viruses routinely acquire mutations in antigenic sites on the globular head of the hemagglutinin (HA) protein. Since these antigenic sites are near the receptor binding pocket of HA, many antigenic mutations simultaneously alter the receptor binding properties of HA. We previously reported that a K165E mutation in the Sa antigenic site of A/Puerto Rico/8/34 (PR8) HA is associated with secondary neuraminidase (NA) mutations that decrease NA activity. Here, using reverse genetics, we show that the K165E HA mutation dramatically decreases HA binding to sialic acid receptors on cell surfaces. We sequentially passaged reverse-genetics-derived PR8 viruses with the K165E antigenic HA mutation in fertilized chicken eggs, and to our surprise, viruses with secondary NA mutations did not emerge. Instead, viruses with secondary HA mutations emerged in 3 independent passaging experiments, and each of these mutations increased HA binding to sialic acid receptors. Importantly, these compensatory HA mutations were located in the Ca antigenic site and prevented binding of Ca-specific monoclonal antibodies. Taken together, these data indicate that HA antigenic mutations that alter receptor binding avidity can be compensated for by secondary HA or NA mutations. Antigenic diversification of influenza viruses can therefore occur irrespective of direct antibody pressure, since compensatory HA mutations can be located in distinct antibody binding sites.  相似文献   

19.
Tamuri AU  dos Reis M  Goldstein RA 《Genetics》2012,190(3):1101-1115
Estimation of the distribution of selection coefficients of mutations is a long-standing issue in molecular evolution. In addition to population-based methods, the distribution can be estimated from DNA sequence data by phylogenetic-based models. Previous models have generally found unimodal distributions where the probability mass is concentrated between mildly deleterious and nearly neutral mutations. Here we use a sitewise mutation-selection phylogenetic model to estimate the distribution of selection coefficients among novel and fixed mutations (substitutions) in a data set of 244 mammalian mitochondrial genomes and a set of 401 PB2 proteins from influenza. We find a bimodal distribution of selection coefficients for novel mutations in both the mitochondrial data set and for the influenza protein evolving in its natural reservoir, birds. Most of the mutations are strongly deleterious with the rest of the probability mass concentrated around mildly deleterious to neutral mutations. The distribution of the coefficients among substitutions is unimodal and symmetrical around nearly neutral substitutions for both data sets at adaptive equilibrium. About 0.5% of the nonsynonymous mutations and 14% of the nonsynonymous substitutions in the mitochondrial proteins are advantageous, with 0.5% and 24% observed for the influenza protein. Following a host shift of influenza from birds to humans, however, we find among novel mutations in PB2 a trimodal distribution with a small mode of advantageous mutations.  相似文献   

20.
Zhang J  Pekosz A  Lamb RA 《Journal of virology》2000,74(10):4634-4644
Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt- or NAt-) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M(1)) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt- or NAt- virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M(2) protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt- and NAt- is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt- and NAt- viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号